
Aimpulse Spectrum
Aimpulse Implementation Specification

Dr. Jan D. Gehrke
Dr. Arne Schuldt

Aimpulse
Intelligent Systems GmbH
Fahrenheitstraße 1
28359 Bremen

Aimpulse Spectrum
Aimpulse Implementation Specification

Contents

1 Introduction .. 1

1.1 Implementation ... 1

1.2 Structure of this Document.. 1

2 Aimpulse Spectrum .. 3

2.1 Fundamental Concepts.. 3

2.2 High-Level Platform ... 3

2.3 Controller .. 7

2.4 Runtime Characteristics ... 9

3 Event-Driven Agent Behavior .. 11

3.1 Event-Driven Behavior Concept.. 11

3.2 Behavior Architecture .. 13

3.3 Basic Behavior ... 14

3.4 Parallel Behavior .. 15

3.5 Sequential Behavior ... 16

3.6 Finite-State Machine Behavior.. 17

3.7 Factory Behavior .. 18

4 Agent Communication ... 19

4.1 Communicative Acts.. 19

4.2 Messages .. 19

4.3 Message Creation.. 21

4.4 Message Exchange .. 21

4.5 Message Patterns .. 22

Version: 1.3.2

Copyright © Aimpulse Intelligent Systems GmbH
All rights reserved.

5 FIPA Interaction Protocols .. 23

5.1 Behavior-Based Implementation... 23

5.2 FIPA Request Interaction Protocol... 23

5.3 FIPA Contract Net Interaction Protocol ... 27

6 FIPA Directory Facilitator.. 33

6.1 Agent and Service Description ... 33

6.2 Behavior-Based Implementation... 34

6.3 Update and Search Functions .. 35

6.4 Directory Management.. 36

7 Agent Team Formation... 39

7.1 Team Formation Interaction Protocol.. 39

7.2 Match, Join, and Leave Functions .. 39

7.3 Behavior-Based Implementation... 41

8 Configuration.. 47

8.1 XML Configuration Files .. 47

8.2 Configuration Architecture .. 48

8.3 Stream-Based Configuration Processing ... 49

References .. 53

Aimpulse Spectrum

1 Introduction

Aimpulse Spectrum is a Java-based runtime environment for multiagent systems. It is designed
to execute a large number of agents in parallel. In addition, Spectrum eases agent development
by means of agent behavior and interaction templates.

Aimpulse Spectrum supports agent communication following the messaging standards of the
IEEE Foundation for Intelligent Physical Agents (FIPA). In contrast to other FIPA-compatible sys-
tems, Aimpulse Spectrum is not considered as a dedicated FIPA agent platform. Instead, it
is designed as a more general environment for executing and evaluating parallel interacting
processes. As a consequence, Aimpulse Spectrum does not support FIPA specialities such as
distributed agent systems or agent mobility.

Aimpulse Spectrum plays to its strengths when it handles thousands or even a million agents
at a time. Furthermore, it allows executing agents with the same implementation in very dif-
ferent execution modes. Besides the usual operation mode using real-time and real-world, the
platform features simulation capabilities. To this end, Aimpulse Spectrum also considers simu-
lation quality criteria (Schuldt, Gehrke, & Werner, 2008) that are usually not covered by general
agent development frameworks. These criteria include time model adequacy, causality, and
reproducibility.

1.1 Implementation

The diagrams depicted in this document are based on UML (Booch, Rumbaugh, & Jacobson,
2005), the Unified Modeling Language, as well as AUML (Odell, Parunak, & Bauer, 2000),
the agent extension to UML. In addition, a full specification of the Application Programming
Interface (API) is available on the Internet at developer.aimpulse.com.

The complete Java implementation of Aimpulse Spectrum has been programmed in a test-
driven way with tests written first (Freeman & Pryce, 2009). Manifold JUnit-based unit tests
further specify the behavior of the implementation.

The implementation of Aimpulse Spectrum follows the fail-fast principle (Shore, 2004). That
is, any failures or illegal states are immediately reported at the interface of the system. Pro-
grammers using Spectrum are thereby supported to find and correct bugs easily already during
development.

To enable the fail-fast technique already on the Java compiler level, Aimpulse Spectrum addi-
tionally uses specific types (Freeman & Pryce, 2009, p. 59). For instance, the language and en-
coding components of messages are represented as LanguageIdentifier and Encoding-
Identifier instead of simply using the String class.

1.2 Structure of this Document

The general overview on the core platform is given in Chapter 2. It presents the overall ar-
chitecture and how it can be employed in order to execute software agents. Furthermore, it
describes the platform components and their interrelationship as well as the platform execution
modes.

The controller is responsible for executing the software agents that populate the platform.
Chapter 3 turns the attention to the actual agent implementation. To this end, it describes the

1

http://developer.aimpulse.com/

Aimpulse Spectrum

framework that enables structuring agent behavior more fine grained. In particular, agent be-
havior can be defined in sequence, in parallel, or in accordance with some finite-state machine.

Social ability is an important property of intelligent software agents. Therefore, software agents
seldomly act in isolation. Chapter 4 describes the API for exchanging messages with other
software agents. All messages are structured in accordance with the Agent Communication
Language issued by the FIPA.

Message exchange in multiagent systems is often further structured by means of interaction
protocols. Interaction protocols ease message handling by specifying the allowed flow of mes-
sages. Popular examples are the request and the contract net interaction protocols that have
been standardised by the FIPA. Chapter 5 describes the behavior-based implementation of these
protocols.

Multiagent systems are open systems. Agents may join and leave the system during runtime.
Therefore, an agent does not necessarily know all of its interaction partners in advance. Chap-
ter 6 describes the directory service with which agents can register themselves in order to be
found by others.

In multiagent systems, there is often a potential for cooperation if a team can jointly achieve a
goal that one agent cannot achieve in isolation. If agents have identified such a potential, they
need a mechanism for team formation. Chapter 7 describes the behavior-based implementa-
tion of the Aimpulse team formation interaction protocol.

Aimpulse Spectrum can be used as a library that is instantiated by other software systems.
Alternatively, it can be used as a stand-alone solution, e.g., for simulation. Chapter 8 describes
how the platform and its agent can be configured and how such configurations can be read
from and written to XML files.

2

Aimpulse Spectrum

2 Aimpulse Spectrum

Aimpulse Spectrum is a Java-based runtime environment for multiagent systems that is de-
signed to execute a large number of software agents in parallel. This chapter presents the
overall architecture and how it can be employed to execute agents.

Section 2.1 introduces the fundamental concepts of Aimpulse Spectrum. Section 2.2 describes
the platform from the high level of user interaction. Section 2.3 covers the detailed level of
process control and scheduling. Finally, Section 2.4 analyses the runtime characteristics .

2.1 Fundamental Concepts

In order to understand how to use Aimpulse Spectrum, the first glance has to be thrown on the
fundamental concepts. Spectrum is not solely an agent execution platform but also a tool for
analyzing complex parallel processes. Thus, the platform provides very flexible configuration
facilities enabling the user to choose the best platform setting for the intended usage. For
instance, one might want to employ Aimpulse Spectrum as an execution engine for multia-
gent systems with operational responsibilities in a corporate context. But then, this real-world
application also requires previous thorough testing of multiagent behaviors. This can be done
by using Aimpulse Spectrum as a simulation platform that executes application scenarios in a
virtualized environment. Thus, the platform has two basic execution modes: Simulation and
Operation. The general idea is that the agents, i.e., agent logic and communication, remain
the same while only the execution mode changes.

This flexibility is accomplished by uncoupling the agents from the actual system environment
and providing a generalized runtime environment that can be exchanged depending on the in-
tended mode of usage. In particular, this runtime environment governs the way time advances
from an agent’s perspective. This is crucial for simulation. It also defines when and how agents
shall be executed, i.e., their scheduling on the operating system and CPU level. For instance,
one might want agents to be dedicated threads or leight-weight autonomous processing tasks
executed in a thread pool.

Thus, Aimpulse Spectrum provides the facilities to setup the platform for a specific runtime
environment. This is done by either using pre-defined implementations shipped with Spectrum
such as for Discrete-Event Simulation (DES), or even implementing own environments. The fol-
lowing section introduces the technical backgrounds for the runtime environment, the general
platform API, and the agents executed on that platform.

2.2 High-Level Platform

The interface com.aimpulse.spectrum.Platform is the usual point of entry for all inter-
action with Aimpulse Spectrum (Figure 2.1). Interactions include runtime commands for setup,
starting and stopping the platform, as well as methods for adding agents. Additionally, the
interface allows platform status queries such as the platform state.

Corresponding interface functions are as follows:

• setup(RuntimeEnvironment) configures the platform for its respective application
purpose (see Section 2.2.1).

• getMode() returns the Platform.Mode specified during platform setup.
• start() starts the configured platform in a dedicated thread. That is, the method returns
right after platform start.

3

Aimpulse Spectrum

<<interface>>

TimeProvider

currentTime() : Timestamp

<<interface>>

Platform

setup(RuntimeEnvironment)

addAgent(Agent, String) : AgentIdentifier

addAgent(Agent, String, Timestamp) : AgentIdentifier

start()

stop()

getMode() : Platform.Mode

getState() : Platform.State

addStateListener(PlatformStateListener)

<<enumeration>>

Platform.State

VOID

INITIALIZED

RUNNING

STOPPED

<<enumeration>>

Platform.Mode

OPERATION

SIMULATION

* 1

* 1

Figure 2.1: UML class diagram of the platform

• stop() causes the platform to stop as soon as possible, i.e., when all current agent com-
putations are done. Thus, the method might return before the platform is actually stopped.

• getState() returns the current runtime state of the platform, e.g., RUNNING.
• currentTime() returns the current platform time (depending on Platform.Mode).
The method is provided by extending the interface TimeProvider.

• addStateListener(PlatformStateListener) adds a state listener to the plat-
form. Each new state is reported to all registered listeners.

• addAgent(Agent, String, Timestamp) adds an agent that is supposed to be exe-
cuted on the platform. The methods takes the agent, the desired name and start time. On
completed addition, the method returns a platform-unique AgentIdentifier based on
the given agent name. The identifier serves as the agent’s address in agent communication.

• addAgent(Agent, String) adds an agent that should be started as soon as possible.
Depending on platform configuration, this is usually after all current agent computations
are done.

The diagram in Figure 2.2 depicts the state sequence of the platform lifecycle.

2.2.1 Technical Platform Configuration

Before starting a Platform, it needs to be setup with the RuntimeEnvironment to be
used. This technical platform configuration defines the Platform.Mode, i.e., OPERATION
with real-time in a real environment or SIMULATION with logical time in a virtual environ-
ment, and its specific behavior with respect to runtime and process scheduling. Figure 2.3
shows the structure of the most important interfaces for technical platform configuration. The
actual agent execution is handled by a Controller provided by the RuntimeEnviron-
ment. The controller consults a RuntimePolicy for its lifecycle. This policy states when
to stop agent execution, e.g., whether the platform should stop when any agent causes an
uncaught exception. Each RuntimeEnvironment has a specific TimeManager which gov-
erns advancement of the platform time based on agent requests and external events. This is
of particular importance in SIMULATION mode.

While a RuntimeEnvironment allows for configuring a Platform, both types are just in-
terfaces. There are implementations for specific purposes and, potentially, with pre-defined
Platform configuration. As a reference implementation, Aimpulse Spectrum features the

4

Aimpulse Spectrum

Platform

[setup]

[start]

[stop]

Void

Initialized

Running

Stopped

Figure 2.2: UML state machine of the platform

<<interface>>

Controller

<<interface>>

TimeManager

<<interface>>

TimeProvider

run()

getRuntimePolicy() : RuntimePolicy

<<interface>>

RuntimeEnvironment

getMode() : Platform.Mode

getTimeManager() : TimeManager

getController() : Controller

<<interface>>

RuntimePolicy

stopWhenEmpty() : boolean

stopWhenIdle() : boolean

stopOnException() : boolean

getTerminationTime() : Timestamp

1

1

*

1

1
1

Figure 2.3: Overview UML class diagram of significant interfaces defining technical configuration

class DefaultPlatform without configuration. For DES, the RuntimeEnvironment class
DiscreteEventSimulation is provided. DiscreteEventSimulation uses a discrete-
event TimeManager that governs logical time by advancing it from event to next event. The
configuration defines the start time used by the TimeManager and could also define a termi-
nation time in the applied RuntimePolicy.

Another RuntimeEnvironment would be applied for the OPERATION mode. Here, the
TimeManager actually uses the system clock, no artificial time advancement is necessary.
Note that the executed agents remain the same. No code adaptations are required.

Platforms can be conveniently configured by means of the ConfigurablePlatform class.
Chapter 8 describes how the runtime environment and process definitions can be read from
and written to a XML files.

5

Aimpulse Spectrum

2.2.2 Agents

Aimpulse Spectrum is a platform for executing agents and other concurrent processes. The
class structure for agents is depicted in Figure 2.4. Agent is an abstract class. It implements
the two interfaces Process and Identifiable with the generic type attribute AgentI-
dentifier. That is, an Agent instance is a process with a specific identifier. This unique
identifier is the basis for addressing it in agent communication, and fulfills the requirements for
FIPA agent identifiers. It is set by the Platform based on the agent name given when adding
the agent.

<<interface>>

Identifiable<AgentIdentifier>

hasIdentifier() : boolean

getIdentifier() : AgentIdentifier

<<interface>>

TimeProvider

currentTime() : Timestamp

<<interface>>

Process

setup()

call() : Timestamp

hasTerminated() : booleanAgent

Figure 2.4: UML class diagram for class Agent

Process is the general interface for all processes executed by Aimpulse Spectrum. Process
enables to query the current time by extending the TimeProvider interface. The semantics
of the provided methods are as follows:

• setup() initializes the agent right before it is executed the first time. This is different from
an object constructor because the agent is instantiated before it is added to the platform.

• call() executes the actual agent until it returns with a result. The result is a Timestamp
that states when the agent requests to be activated again. If the agent has no specific
request but wants to wait passively until some event (e.g., a message) occurs, it returns the
maximum timestamp (Timestamp.MAX).

• hasTerminated() indicates whether the agent has terminated and does not want to
be activated again. This property is evaluated by the platform after each agent call. Once
true, the agent is removed from the platform.

• currentTime() returns the current time for this process. Note that, the process time does
not have to match the current system time, especially when running a simulation. Thus, it
is strictly discouraged to access system time via System.currentTimeMillis() in the
Java API.

For agents that are supposed to act as communicating FIPA agents Aimpulse Spectrum uses
class CommunicativeAgent. CommunicativeAgent provides messaging capabilities by
implementing the MessagingClient interface. The usage of messaging functions is de-
scribed in Chapter 4.

2.2.3 Events

Events are the means for interaction with processes running on the platform. For instance,
agents can interact with each other by exchanging messages. When an agent sends a message,
the platform generates an Event instance containing that message. Then, the platform takes

6

Aimpulse Spectrum

care of delivering that message to the addressees. When a message event or any other event
is delivered, each receiver agent is activated even if there was no specific request of the agent
to be activated at that time. Since Aimpulse Spectrum also serves as a simulation platform, the
agent is activated at the (logical) time of the event. The platform also guarantees that events
are processed in reproducible timestamp order.

2.3 Controller

The Controller interface is used for the internal management of agent execution. This
includes the determination of agents that need execution (logical scheduling) as well as actual
execution (physical scheduling). Thus, logical scheduling is about who needs execution and
physical scheduling is about how this should be done.

The actual scheduling policy of the controller depends on its implementation. Aimpulse Spec-
trum provides a SynchronizedController. In this implementation, all agents with the
same time for logical scheduling are executed within the same tick (or cycle). An agent to
be activated at a later time is not scheduled before all agents of previous ticks are finished
with their cycle. In physical scheduling however, the agents running within one tick might be
executed in any order, sequentially or in parallel.

The class diagramm for Controller and SynchronizedController is depicted in Fig-
ure 2.5. Regarding the interface, Controller provides similar functions as Platform. But
note that a platform might run multiple controllers at the same time or in sequence. Anyhow,
DefaultPlatform has exactly one controller. The interface semantics for Synchronized-
Controller are as follows:

• addAgent(Agent, Timestamp) adds a new agent (with AgentIdentifier already
set) to the controller. The timestamp indicates the desired start time of the agent.

• addEvent(Event) adds a new event to the platform (in particular resulting from agent
messages).

• getRuntimePolicy() returns the RuntimePolicy applied by this controller.
• run() runs the controller. This method is called upon Platform.start().
• stop() causes this controller to stop execution of added processes. The method might
return before the controller is actually stopped.

• getState() returns the current Controller.State. Is distinguishes whether the con-
troller is VOID (not started), RUNNING, or STOPPED.

• tick() The sequential tick number of the current cycle. The first cycle has tick number 1.
In VOID state the method returns 0.

• currentTime() The (logical) controller time for the current tick as returned by the applied
TimeManager.

• getStopOccasion() returns the StopOccasion of the controller. It enables to query
the reason of controller termination (e.g., the controller was idle).

2.3.1 Controller Execution Process

The diagram in Figure 2.6 shows the internal execution states of a SynchronizedCon-
troller. These internal states differ from the exposed controller states. The controller state
RUNNING is separated into the internal states Evaluate and Execute. The controller is in state
Void before it is started by the platform. Usually, the platform runs the controller in a dedicated
thread. When running, the controller first switches to state Evaluate. In this state Synchro-

7

Aimpulse Spectrum

<<interface>>

Controller

addAgent(Agent, Timestamp)

addEvent(Event)

run()

stop()

getRuntimePolicy() : RuntimePolicy

getState() : Controller.State

getStopOccasion() : Controller.StopOccasion

<<interface>>

SynchronizedController

currentTime() : Timestamp

tick() : int

<<enumeration>>

Controller.State

VOID

RUNNING

STOPPED

<<enumeration>>

Controller.StopOccasion

NONE

REACHED_STOP_TIME

EMPTY

IDLE

EXCEPTION

EXTERNAL_STOP

* 1

* 1

Figure 2.5: UML class diagram of the (synchronized) controller

nizedController adds newly added processes and determines the logical tick time of the
next cycle. This is done by evaluating the lowest timestamp from intrinsic requests of agents
(the agent start time in the first cycle) and extrinsic requests from added events.

Synchronized Controller

[run]

[do not
proceed]

[stopped]

[proceed
next tick]

[not
stopped]

Void

Stopped

Evaluate

entry / add new processes

entry / get next tick time

do / check proceed

exit / set time

Execute

entry / get extrinsic activations

entry / get intrinsic activations

do / execute processes

exit / gather results

Figure 2.6: UML state machine of the synchronized controller

If the controller evaluates that it should proceed with the next cycle (depending on the applied
RuntimePolicy) it sets the time to the lowest requested timestamp and switches to state
Execute. In the other case, there is a reason for termination (e.g., a configured stop time is
reached) and the controller switches to state Stopped. It is not possible to restart a controller
once it stopped.

In state Execute the controller determines the agents that ought to be activated in the current
cycle (i.e., logical scheduling). This is either due to intrisic or extrinsic requests. Then, all agents

8

Aimpulse Spectrum

to be activated are executed by handing them over to the applied Scheduler (physical schedul-
ing). Finally, the controller waits for each agent to be finished and notes their result as a new
intrinsic activation request.

If the platform operator triggered stop() for the controller, it directly switches to Stopped
state after executing the current cycle. Otherwise, it continues by preparing the next cycle in
state Evaluate.

2.3.2 Logical vs. Physical Scheduling

Logical scheduling is more or less the same for any application of the platform, no matter if it
is operation or simulation. Controller manages the activation requests which are gathered
from the result of each Agent.call() or might be triggered by extrinsic events (e.g., through
delivered messages).

Physical scheduling might be very different depending on the current platform application and
its implementation by the Controller. First, one must distinguish system time and logical
time. While logical scheduling tells the logical time of desired agent execution, the actual
execution with respect to system time might be very different. One reason is the runtime
mode (Platform.Mode) of the platform. For simulation, system time and logical time usually
do not correspond. Either the logical start time is different although time advancement is the
same as for system time (as in real-time simulation) or time advancement differs. Differences
in time advancement might be due to scaled real-time simulation or event-discrete simulation.
Additionally, with parallel simulation, agents as logical simulation processes might even diverge
in their logical time, called local virtual time (LVT). In the latter case, the agent controller has
no definite current time. Instead, there is an interval from the earliest LVT to the latest LVT of
the processes it handles.

2.4 Runtime Characteristics

Aimpulse Spectrum is designed to execute thousands or even more than a million agents con-
currently. This is achieved by distributing agent execution to multiple threads and consequently
multiple CPUs. In contrast to other systems, there is no fixed but an instant mapping between
agent and thread. This way, the platform uses much less working memory and avoids disturb-
ing CPU context switches that would be caused by uncoordinated thread scheduling by the
operating system.

Besides the number of agents, the actual runtime performance of Aimpulse Spectrum largely
depends on the frequency of agent activity and the system load caused by this activity. This
is because the achievable parallelism is determined by these parameters. For the Synchro-
nizedController the expected parallelism EP, i.e., processes running within one controler
tick, is

EP = p · tg
∆a

where p is the overall number of alive processes/agents on the platform, tg is the set minimum
granularity for advancing time from tick to tick, and ∆a is the average activation interval for
a process. For instance, with p = 10000 agents, tg = 1 second of time advancement, and
∆a = 30 minutes average activation the expected parallelism would be

EP = 10000 · 1
30 · 60

= 5.56

9

Aimpulse Spectrum

Consequently, in some ticks the parallelism might be higher or lower, e.g., only 2 agents per
controller tick. In this case, for a hardware platform with 4 CPUs, actual CPU parallelism is
expected to be significatly lower than 4. Expected and actual parallelism increase with more
agents and a longer timespan for time granularity.

10

Aimpulse Spectrum

3 Event-Driven Agent Behavior

In Aimpulse Spectrum, the Controller is responsible for executing the software agents on
the platform (Chapter 2). Every time an agent is executed, its call() method is called. The
agent can then autonomously perform its computation. Afterwards, the agent specifies a
Timestamp in order to request its next execution. This simple interface between the platform
and the agent does not further restrict the way agents are implemented.

On the one hand, it is advantageous that agent implementation is rarely restricted. On the
other hand, it is also a challenge for programmers to deal only with the raw interface. This
particularly holds if an agent should be capable of complex behavior. Therefore, Aimpulse
Spectrum provides a default implementation for event-driven agent behavior that eases agent
implementation significantly.

Section 3.1 introduces the concept of event-driven agent behavior. Subsequently, Section 3.2
gives a broader overview on the event-driven agent behavior architecture with all related inter-
faces and classes. Finally, Sections 3.3 to 3.7 describe the predefined behavior implementations
provided by Aimpulse Spectrum.

3.1 Event-Driven Behavior Concept

For rather simple agents, it suffices to implement their behavior directly in the respective
call() method. The object-oriented programming paradigm allows structuring the imple-
mentation. The event-driven behavior paradigm helps structuring agent behavior even further.
It allows grouping the implementation into states of agent behavior. Transitions between these
states depend on the result of the preceding states. The respective state is kept even over mul-
tiple calls of the call() method. Furthermore, the execution of agent behavior is driven by
events. This means that an agent behavior is only executed if a defined precondition holds.

The atomic entities in this paradigm are so-called behavior instances (Figure 3.1) which can be
added to behavior-based agents.

Execute behavior

:Behavior

waitingFor() : EventPattern

run() : void

isFinished() : boolean

result() : Result
[true]

Check if behavior

is finished

Wait until behavior

demands execution

Behavior

[false]

Figure 3.1: UML state machine of the event-driven agent behavior paradigm

11

Aimpulse Spectrum

Before a behavior is executed, it is checked when the behavior actually demands execution. To
this end, the scheduler calls the waitingFor() method which returns an EventPattern
object. The event pattern specifies a timeout Timestamp at which the behavior wants to
be executed at the latest. If a behavior instance intends to handle arbitrary events, the cor-
rect event pattern is EventPattern.ANY. In this particular event pattern, the value for the
timeout is set to Timestamp.MIN, i.e., the behavior is immediately executed.

Event patterns may also contain a MessagePattern which specifies which incoming mes-
sages the behavior awaits (Chapter 4). If a behavior instance intends to handle arbitrary mes-
sages, the correct message pattern is MessagePattern.ANY. If the EventPattern awaits
messages without a timeout, the default value for the timeout is Timestamp.MAX, i.e., no
timeout is defined.

As soon as the event pattern evaluates to true, the run() of the behavior is called in order
to execute it. Actual implementations may further subdivide this method, e.g., with methods
being executed exactly once before or after the execution of the behavior (Section 3.3).

Subsequent to executing the run() method of the behavior, the isFinished() method is
called in order to find out whether the behavior demands further execution. If the behavior is
not yet finished, the execution cycle starts again with checking when the behavior demands
execution again.

Once, a behavior isFinished(), it may return a Result if the result()method is called.
By default, the result is null. Following the fail-fast principle, behavior implementations are
encouraged to throw an IllegalStateException if result() is called before the be-
havior isFinished().

The following design contract holds for event-driven behaviors:

1. It is assumed that each behavior instance wants to be executed at least once. Hence, the
initial return value of waitingFor() may not be null. After each execution cycle, the
waitingFor()method may only be called again if isFinished() evaluates to false.
Otherwise, waitingFor() may return any value including null.

2. isFinished() is always called after executing a behavior, never before. Hence, the is-
Finished() method of behaviors that only demand one execution can be implemented
by simply returning always true.

3. If a behavior instance specifies a timeout for execution, it is guaranteed that the behavior
is not executed before this timeout (unless, for instance, the message pattern of the event
pattern evaluates to true for any incoming message). However, it is not guaranteed that
the behavior is executed exactly at the time of the timeout. There may be a certain delay
which is amongst others caused by the scheduling of other concurrent behavior instances.

Note that the waitingFor(), isFinished(), and result() interface methods are get-
ters for the respective values. This means that their implementations should not include code
not related to returning the respective values. For instance, result() should not contain any
code that is intended to be executed after the behavior is finished. Due to its nature of being
a getter, result() offers information to other classes which may decide to request it or not.
Usually, the method is never called if subsequent agent activity does not depend on the result.
Furthermore, all getters may be called multiple times. This could also interfere with program
logic not related to returning the respective value of the getter.

12

Aimpulse Spectrum

The behavior concept of Aimpulse Spectrum resembles the one of JADE, the Java Agent Devel-
opment Framework (Bellifemine, Caire, & Greenwood, 2007). The major distinction between
the behavior concepts of JADE and Aimpulse Spectrum is the explicit specification of the event
patterns behaviors are waiting for. This separates the waiting-for checks from the rest of the
implementation. In particular, this allows executing only those behaviors which wait for any of
the incoming messages.

3.2 Behavior Architecture

The class architecture of the event-driven behavior paradigm is as follows (Figure 3.2). Each be-
havior instance is connected to one behavior controller interface. The BehaviorController
interface is implemented by behavior-based agents. The interface allows

• adding and removing behaviors to and from the controller,
• getting the current time,
• accessing the current events of the agent,
• getting the own identifier of the agent, and
• sending and receiving message.

To this end, the BehaviorController extends the TimeProvider, EventAccess, and
MessagingClient interfaces. Each Behavior has exactly one BehaviorController
while each BehaviorController may control multiple Behavior instances.

<<interface>>

TimeProvider

currentTime() : Timestamp

<<interface>>

BehaviorController

addBehavior(Behavior)

removeBehavior(Behavior)

<<interface>>

Behavior

waitingFor() : EventPattern

run()

isFinished() : boolean

result() : Result

<<interface>>

MessagingClient

getAddress() : AgentIdentifier

hasMessages() : boolean

receive() : Message

hasMessages(MessagePattern) : boolean

receive(MessagePattern) : Message

generateUniqueIdentifier() : UniqueIdentifier

send(Message) : Message

<<interface>>

EventAccess

hasMessages(MessagePattern) : boolean

*

1

Figure 3.2: Behavior architecture

Spectrum provides the BasicBehavior as a default implementation for simple behaviors.
Simple behaviors can be combined to complex ones with composite behaviors (Figure 3.3):

• ParallelBehavior
• SequentialBehavior
• FiniteStateMachineBehavior
• FactoryBehavior

13

Aimpulse Spectrum

ParallelBehavior

addSubBehavior(Behavior)

removeSubBehavior(Behavior)

SequentialBehavior

addSubBehavior(Behavior)

removeSubBehavior(Behavior)

<<interface>>

Behavior

BasicBehavior

currentTime() : Timestamp

getController() : BehaviorController

onStart()

action()

onEnd()

reschedule()

block(Duration)

blockUntil(Timestamp)

block()

blockUntil(MessagePattern)

blockUntil(MessagePattern, Duration)

blockUntil(MessagePattern, Timestamp)

finish()

setResult(Result)

FiniteStateMachineBehavior

registerStartState(State, Behavior)

registerState(State, Behavior)

deregisterState(State)

registerTransition(State, State)

registerTransition(State, State, Result)

deregisterTransition(State)

deregisterTransition(State, Result)

currentState() : State

Figure 3.3: Behavior implementations

3.3 Basic Behavior

Instances of the BasicBehavior class are ready for execution immediately when they are
added to a controller (Figure 3.4), i. e., their waitingFor()method returns the EventPat-
tern.ANY pattern. The actual behavior of BasicBehavior instances can be implemented
in the onStart(), action(), and onEnd() call-back methods. When a BasicBehavior
is executed for the first time, the onStart() method is executed. Then, in every run (includ-
ing the first run) the action() method is executed. After the final run of the action()
method, the onEnd() method is called.

Execute action()

Execute onStart()

Execute onEnd()
[true]

Check if behavior

is finished

Wait until behavior

demands execution

Basic Behavior

[false]

Prepare action

do / set finished to true

 set waiting-for to any

Prepare start

do / set result to null

Figure 3.4: UML state machine of the basic behavior

Before each call to the action() method, the behavior is set to be finished in the prepare-
action state. If the programmer does not explicitly request re-scheduling in the action()
method, the behavior is executed only once and terminates afterwards. In order to request
re-scheduling, the programmer can call one of the following methods (Figure 3.3):

14

Aimpulse Spectrum

• reschedule() to reschedule the behavior as early as possible.
• block(Duration) to block the behavior for the specified duration of time.
• blockUntil(Timestamp) to block the behavior until a specified point in time.
• block() to block the behavior until an arbitrary message arrives.
• blockUntil(MessagePattern) to block the behavior until a Message matching the
MessagePattern arrives.

• blockUntil(MessagePattern, Duration) to block the behavior until a matching
Message arrives but no longer than the specified duration of time.

• blockUntil(MessagePattern, Timestamp) to block the behavior until a matching
Message arrives but no longer than the specified point in time.

In order to override a previous request for re-scheduling, the finish()method can be called.
Note that these methods can be called only in the onStart() and action() call-back meth-
ods. Calling them in the onStart()method allows setting the event pattern for the first exe-
cution of the action()method. By contrast, these methods cannot be called in the onEnd()
method because at that point the behavior is already finished. Following the fail-fast paradigm,
illegal-state exceptions are thrown if the methods are called in disallowed states.

The result of the behavior can be set by means of the setResult() method. Note that
the setResult() method can be called only in the onStart(), the action(), and the
onEnd() call-back methods. Setting a result already in the onStart() method is useful
whenever there is a default result which may be overriden later. Contrariwise, setting a result
in the onEnd() method is useful if no result has been set before. Following the fail-fast
paradigm, illegal-state exceptions are thrown if the method is called in disallowed states.

The BasicBehavior is prepared to be added again to a behavior controller after it is finished.
This is possible because the prepare-action state does not only set the behavior to be finished,
but also sets the waiting-for pattern to EventPattern.ANY. This means the behavior awaits
immediate execution again when it is re-added to a behavior controller. Furthermore, the
prepare-start state sets the result of a previous execution back to null. User-specific variables
should be re-set manually in the onEnd() or onStart() methods.

3.4 Parallel Behavior

The ParallelBehavior is a composite behavior. All child behaviors that are added to this
kind of behavior are executed in parallel, but not concurrently. The child behavior scheduling is
as follows (Figure 3.5). The parallel behavior waits until any of its children demands execution.
Then, it iterates over all children. Each child that demands execution is executed once. After
executing a child, it is checked whether this particular child is finished. If it is finished, the
child is removed from the internal scheduler of the parallel behavior. Afterwards, the next
child demanding execution is called. After the parallel behavior has finished iterating over its
children, it again waits until at least one child demands execution.

The children of this composite behavior can again be composite behaviors. The child behaviors
are kept in an order-preserving set. The implementation of this set allows adding and removing
child behaviors while iterating over the set.

The EventPattern a parallel behavior is waitingFor() is an aggregated event pattern of
its children. If a parallel behavior has no child, its EventPattern is null. The timeout of
the event pattern is the minimum timeout of all children. The aggregated message pattern is
simply the universal message pattern. When a message arrives, it is checked for every child

15

Aimpulse Spectrum

Execute

child behavior

Get next

child behavior

Check if child behavior

is finished

Remove child behavior

from behavior scheduler

Check if child behavior

demands execution

Parallel Behavior

[true]

[false][has next child]

[no child]

[no next child]

[true]

[false]

Wait until any child behavior

demands execution

Figure 3.5: Child behavior scheduling of the parallel behavior

whether it awaits the message. This simplification is done for performance reasons. It means
that it suffices to iterate once over the event patterns. The alternative would be to aggregate
the message patterns. However, then the patterns had to be evaluated multiple times, once
on every level of the behavior tree.

The result() of a parallel behavior is the result of its last child.

A parallel behavior is also the standard scheduler for behavior-based agents. That is, on the
top level, each agent has a parallel behavior. Behaviors added to and removed from the agents
are managed by this parallel behavior.

3.5 Sequential Behavior

The SequentialBehavior is a composite behavior. All child behaviors that are added to
this kind of behavior are executed in sequence. The child behavior scheduling is as follows
(Figure 3.6). A sequential behavior always only executes its first child. It waits until the first
child demands execution. If the first child demands execution, it is actually executed. After
executing a child, it is checked whether this particular child is finished. If it is not finished,
the sequential behavior waits until the child again demands execution. If it is finished, the
child is removed from the internal scheduler of the sequential behavior. The same procedure is
repeated for the new first child until all children have been removed from the internal scheduler.

The children of this composite behavior can again be composite behaviors. The child behaviors
are kept in an order-preserving set. The implementation of this set allows adding and removing
child behaviors while iterating over the set.

16

Aimpulse Spectrum

[no child]

[has child]

Execute

child behavior

Check if child behavior

is finished

Remove child behavior

from behavior scheduler

Sequential Behavior

[true]

[true]

Get first

child behavior

Wait until child behavior

demands execution

[false]

Figure 3.6: Child behavior scheduling of the sequential behavior

The EventPattern a sequential behavior is waitingFor() is the event pattern of the first
child. If a sequential behavior has no child, its EventPattern is null. The result() of a
sequential behavior is the result of its last child.

3.6 Finite-State Machine Behavior

The FiniteStateMachineBehavior is a composite behavior. Child behaviors can be reg-
istered as states of the underlying finite-state machine. Transitions between the states can be
registered. Transitions may depend on conditions, namely the result() of the behavior in
the origin state. The child behavior scheduling is as follows (Figure 3.7).

Each instance of the finite-state machine behavior starts with executing its start state. It waits
until the start child demands execution. If the first child demands execution, it is actually
executed. After executing a child, it is checked whether this particular child is finished. If it is
not finished, the finite-state machine behavior waits until the child again demands execution.
If it is finished, the next child is chosen based on the registered transitions. Finished children
are not removed from their parent because there may be transitions calling them again. This
procedure is repeated until a terminal state is reached.

The children of this composite behavior can again be composite behaviors. The implementa-
tion of the FiniteStateMachineBehavior allows adding and removing child behaviors
while executing the finite-state machine behavior. However, the state that is currently executed
cannot be removed.

The EventPattern a finite-state machine behavior is waitingFor() is the event pattern of
its current state. If a finite-state machine behavior has no states, its EventPattern is null.
The result() of a finite-state machine behavior is the result of its last state.

17

Aimpulse Spectrum

[no next child]

Get next

child behavior

[has next child]

Execute

child behavior

Check if child behavior

is finished

Wait until child behavior

demands execution

Finite-State Machine Behavior

[false] [true]

Figure 3.7: Child behavior scheduling of the finite-state machine behavior

3.7 Factory Behavior

Due to the nature of finite-state machines, some states might be never reached in some execu-
tions. However, some state behaviors may be quite heavy-weight, e.g., because they depend
on database connections. Therefore, it is not reasonable to instantiate them already when
the overall finite-state machine is instantiated. Instead, it is desirable to instantiate them dy-
namically on demand. Furthermore, in order to instantiate a behavior, input from a previous
behavior might be required.

The FactoryBehavior implements lazy initialisation for behaviors (Figure 3.8). That is, the
creation of a behavior is delayed until it is actually needed. When being executed for the
first time, the FactoryBehavior instantiates an inner behavior by calling its createBe-
havior() method. If the inner behavior is waitingFor() any of the current events, it is
immediately executed.

1
1

FactoryBehavior

createBehavior() : Behavior

<<interface>>

Behavior

Figure 3.8: Factory behavior

After the instantiation of the inner behavior, the wrapping FactoryBehavior delegates all
method calls to the created inner behavior. The only exception is the isFinished()method
which is not delegated until the inner behavior has been executed for the first time. This
ensures that the factory wrapper is not unscheduled if the inner behavior signalises that it is
finished before the first run (which is acceptable because, according to the design contract for
event-driven behaviors, isFinished() should only be checked after executing a behavior).

18

Aimpulse Spectrum

4 Agent Communication

Social ability is an important property of intelligent software agents. Therefore, software agents
seldomly act in isolation. In Aimpulse Spectrum, software agents can exchange messages that
follow the structure of the Agent Communication Language (ACL) specified by the Foundation
for Intelligent Physical Agents (2002c). For performance reasons, the messages on Aimpulse
Spectrum are directly exchanged as objects. That is, they are not transformed into an interme-
diary text representation.

Section 4.1 describes communicative acts and how they are represented in Aimpulse Spectrum.
Subsequently, Sections 4.2 to 4.4 describe the structure of FIPA messages and how they can be
created and exchanged. Finally, Section 4.5 explains how messages patterns can be defined in
order to specify the messages a behavior is waiting for.

4.1 Communicative Acts

Communicative acts like inform or request indicate the intention of a message sent by
a software agent. This is necessary in order to avoid ambiguities of the utterance (Huhns &
Stephens, 1999, p. 87). The Foundation for Intelligent Physical Agents (2002d) has standard-
ised a library of communicative acts. The purpose of this specification is to ensure interop-
erability between multiagent systems. The communicative acts are used in order to structure
communication, e.g., in interaction protocols (Chapter 5).

Aimpulse Spectrum provides constants for all FIPA-defined performatives in the interface

com.aimpulse.spectrum.mas.fipa.Performatives

4.2 Messages

The structure of messages on Aimpulse Spectrum follows the standards of the Foundation for
Intelligent Physical Agents (2002c). The Spectrum implementation distinguishes between the
Message and ModifiableMessage interfaces (Figure 4.1).

The Message interface provides means to access all components of a message. The meth-
ods available cover access to the performative (type of communicative act), the participants
in communication (sender, receivers, reply-tos), the content (either a String or a Serial-
izable object), the content description (language, encoding, ontology), and conversation
control (protocol, conversation-id, reply-with, in-reply-to, reply-by). In addition, it is possible to
access additional user-defined parameters. Note that single-valued message components may
be null, multi-valued message components may be empty collections. However, every message
should at least have a performative specified.

The ModifiableMessage interface extends the Message interface. It provides additional
means to set and unset the values of message components. Furthermore, multi-valued mes-
sage components (receivers, reply-tos, user-defined parameters) can be reset completely by
respective clear methods. Note that the sender cannot be set. This is to prevent fraud by
spoofing the sender. The sender is set by Aimpulse Spectrum when a message is sent. It is
also ensured that a sender that might have been set by an extended implementation of the
ModifiableMessage interface is overwritten by Aimpulse Spectrum. Furthermore, the per-
formative can only be replaced but cannot be unset. This is due to the fact that every message
should at least have a performative.

19

Aimpulse Spectrum

<<interface>>

Message

getPerformative() : CommunicativeAct

getSender() : AgentIdentifier

getReceivers() : SortedSet<AgentIdentifier>

getReplyTos() : SortedSet<AgentIdentifier>

getContent() : String

getContentObject() : Serializable

getContentObjectBytes() : byte[]

getLanguage() : LanguageIdentifier

getEncoding() : EncodingIdentifier

getOntology() : OntologyIdentifier

getProtocol() : ProtocolIdentifier

getConversationID() : UniqueIdentifier

getReplyWith() : UniqueIdentifier

getInReplyTo() : UniqueIdentifier

getReplyBy() : Timestamp

hasUserParameter(UserParameter) : boolean

getUserParameter(UserParameter) : String

getUserParameters() : SortedMap<UserParameter, String>

clone() : Message

<<interface>>

ModifiableMessage

setPerformative(CommunicativeAct)

addReceiver(AgentIdentifier)

removeReceiver(AgentIdentifier) : boolean

clearReceivers()

addReplyTo(AgentIdentifier)

removeReplyTo(AgentIdentifier) : boolean

clearReplyTos()

setContent(String)

unsetContent()

setContentObject(Serializable)

unsetContentObject

setLanguage(LanguageIdentifier)

unsetLanguage()

setEncoding(EncodingIdentifier)

unsetEncoding()

setOntology(OntologyIdentifier)

unsetOntology()

setProtocol(ProtocolIdentifier)

unsetProtocol()

setConversationID(UniqueIdentifier)

unsetConversationID()

setReplyWith(UniqueIdentifier)

unsetReplyWith()

setInReplyTo(UniqueIdentifier)

unsetInReplyTo()

setReplyBy(Timestamp)

unsetReplyBy()

addUserParameter(UserParameter)

addUserParameter(UserParameter, String)

removeUserParameter(UserParameter) : String

clearUserParameters()

Figure 4.1: UML class diagram of the message interfaces

All messages implement the toString()methodwhich can be used in order to print them for
debugging. Note that messages are quite complex objects. Consequently, an implementation
of the toString()method might also be computationally demanding. Furthermore, caching
the string representation might not be advisable because it can be quite memory-consuming.
Therefore, this method should better not be used excessively.

Currently, the toString() method of messages follows the specification for representing
ACL messages in XML issued by the Foundation for Intelligent Physical Agents (2002b). The
XML format has many advantages as there are manifold tools to process XML. For instance,
XSLT (Kay, 2008) might be applied in order to create other representations (Foundation for
Intelligent Physical Agents, 2002a) directly from ACL messages in the XML format.

However, developers should not rely on that output of the toString() method as it may
be subject to change. Instead, they can employ the XMLMessageWriter which transforms
messages into events for SAX, the Simple API for XML (McLaughlin, 2001, Chapters 3 and 4).
These events can then be handled by an arbitrary SAX content handler for further processing
including serialization. The other way round, the XMLMessageHandler can be employed in
order to transform SAX events generated by an XML parser back into message objects.

20

Aimpulse Spectrum

4.3 Message Creation

Messages can be created conveniently by means of a MessageBuilder (Figure 4.2). The
static aMessage() method creates a message builder with a specified communicative act.
Alternatively, the static aReply()method creates a message (with a specified communicative
act) that is a response to a former message. Components related to conversation control
(protocol, conversation-id, reply-to, receivers) and content description (language and ontology)
are then prepared automatically for the reply.

The message builder provides methods to specify messages conveniently in one line. The
build() method finally creates a ModifiableMessage. This means that after building,
all components can still be manipulated through the ModifiableMessage interface.

Unique identifiers are used in order to identify the conversation-id and the reply-with (and in-
reply-to, respectively) message components. These identifiers should be unique throughout
the whole multiagent system. The generateUniqueIdentifier() method of the Mes-
sagingClient interface provides such unique identifiers. It can be accessed by agent and
behavior implementations by the extending BehaviorController interface (Chapter 3).

<<interface>>

BehaviorController

UnmodifiableMessage

UnmodifiableMessage(AgentIdentifier, Message)

MessageBuilder

aMessage(CommunicativeAct) : MessageBuilder

aReply(Message, CommunicativeAct) : MessageBuilder

to(AgentIdentifier) : MessageBuilder

to(Set<AgentIdentifier) : MessageBuilder

replyTo(AgentIdentifier) : MessageBuilder

replyTo(SortedSet<AgentIdentifier) : MessageBuilder

containing(String) : MessageBuilder

containingObject(Serializable) : MessageBuilder

inLanguage(LanguageIdentifier) : MessageBuilder

encodedAs(EncodingIdentifier) : MessageBuilder

definedBy(OntologyIdentifier) : MessageBuilder

inProtocol(ProtocolIdentifier) : MessageBuilder

inConversation(UniqueIdentifier) : MessageBuilder

replyWith(UniqueIdentifier) : MessageBuilder

inReplyTo(UniqueIdentifier) : MessageBuilder

replyBy(Timestamp) : MessageBuilder

withUserParameter(UserParameter) : MessageBuilder

withUserParameter(UserParameter, String) : MessageBuilder

build() : ModifiableMessage

<<interface>>

MessagingClient

getAddress() : AgentIdentifier

hasMessages() : boolean

receive() : Message

hasMessages(MessagePattern) : boolean

receive(MessagePattern) : Message

generateUniqueIdentifier() : UniqueIdentifier

send(Message) : Message

Figure 4.2: Classes related to message creation

4.4 Message Exchange

The MessagingClient interface also provides the means to exchange messages. The has-
Message() method checks whether the agent has incoming messages to be handled. The
receive() method provides the next message from the internal message queue (and re-
moves it from the queue). Methods with the same name but an additional MessagePattern
parameter allow checking for and receiving specific messages.

Messages can be sent with the send(Message) method of the MessagingClient in-
terface. The message transport system then creates an UnmodifiableMessage that also

21

Aimpulse Spectrum

includes the AgentIdentifier of the actual sender. Turning a Message into an Unmodi-
fiableMessage ensures that the receiving agent cannot manipulate the message.

4.5 Message Patterns

Message exchange in agent-oriented programming is asynchronous. It differs from calling
methods on objects synchronously in object-oriented programming. After sending a message,
some time passes until the response from the correspondent arrives. This is, for instance,
important in simulation where time advances only between agent executions. This means that
a response can never arrive without time consumption during the same execution (Schuldt et
al., 2008).

In practice, it is therefore usually the best choice to finish one execution cycle after sending a
message. In order to be executed again when a response arrives, the behavior should specify
a respective event pattern (Chapter 3) that covers the respective messages MessagePattern
(Figure 4.3). Messages can be recognised, for instance, based on a conversation-id and and
in-reply-to slots.

<<interface>>

MessagePattern

covers(Message) : boolean

ExampleBasedMessagePattern

ExampleBasedMessagePattern(Message)

EventPattern
1

1

Figure 4.3: Message patterns

The MessagePattern interface contains the covers(Message) method in order to check
whether a message is covered by the respective pattern. Implementations can check arbitrary
components of the message. The ExampleBasedMessagePattern takes an existing mes-
sage as an example template. The pattern covers a message if

1. For each single-valued component set in the template, the message has the same value like
the template and

2. For each multi-valued component set in the template, the message has at least the same
values like the template.

Note that programmers are relieved from dealing with message exchange and message pat-
terns if they employ protocol implementations such as the FIPA Request or the FIPA Contract
Net Interaction Protocols (Chapter 5). Therefore, it is advisable to employ such implementations
whenever they are available.

22

Aimpulse Spectrum

5 FIPA Interaction Protocols

The standardized structure of messages helps agents understand and interpret them (Chap-
ter 4). However, agent communication is usually not limited to sending single messages.
Therefore, multiagent communication is often further structured by means of interaction pro-
tocols (Schuldt, 2011, Section 4.2.4). These interaction protocols ease message handling by
specifying the expected and allowed flow of messages.

Section 5.1 introduces how interaction protocols can be implemented based on the behavior
concept. Employing such predefined behaviors disburdens the programmer from the complex-
ity of message processing. Instead, only call-back methods have to be implemented.

Section 5.2 describes the implementation of the request protocol which is probably one of the
most popular protocols standardized by the Foundation for Intelligent Physical Agents (2002f).
It allows an initiator to request some action from a responder. The focus of Section 5.3 is on
the contract net, another prominent protocol issued by the Foundation for Intelligent Phys-
ical Agents (2002e). Compared to the request protocol, the contract net has an additional
negotiation step before an action is actually performed.

5.1 Behavior-Based Implementation

The API of the protocol implementations for Aimpulse Spectrum resembles the one for JADE
(Bellifemine et al., 2007). Like in JADE, agents for Aimpulse Spectrum can be implemented
based on a behavior concept (Chapter 3). Therefore, programmers that are experienced with
JADE can easily implement agents also for Aimpulse Spectrum. Note, however, that behaviors
for Aimpulse Spectrum are based on an event-driven approach. Furthermore, while the API of
the Spectrum behaviors resembles that of JADE behaviors, their internal implementation may
differ significantly.

Each role a participant in the protocol can take, initiator and responder, is implemented by
means of a respective behavior in Aimpulse Spectrum. Creating and handling messages is done
by means of predefined call-back methods. Hence, it suffices to implement these methods. In
particular, this means that programmers are disburdened from low-level message control.

The behaviors implementing the protocol roles are based on the finite-state machine behavior
(Section 3.6). It is important to note that the standard implementation of this behavior executes
each state only once per invocation of the run method. Hence, it requires at most n runs to
receive n messages. It is thus ensured that CPU time is equitably shared by the agents even
if they are executed in thread pool. Nevertheless, programmers do not have to consider re-
scheduling actively because this is done by the underlying implementation.

5.2 FIPA Request Interaction Protocol

The FIPA Request Interaction Protocol is defined as follows (Figure 5.1). The initiator sends a
request to a group of responders. Each responder decides whether it agrees or refuses to per-
form the requested action. The initiator is notified about the decision. Likewise, a response is
sent if the responder does not understand the original request. If the responder has performed
the respective action, the initiator is informed about the result. Likewise, a failure message is
sent if a failure occurred. Note that the agree message in the first step is optional. The FIPA
standard mentions that it may be left out, for instance, if the result of the requested action is
available very quickly.

23

Aimpulse Spectrum

:Initiator :Responder

failure

inform

refuse

not-understood

agree

request

FIPA-Request-Protocol

n

m≤n

q≤m

p≤n-m

n-m-p

m-q

Figure 5.1: FIPA Request Interaction Protocol

A timeout can be defined by means of the reply-by slot of the initial request message.
It refers to the time until the first response has to be sent. All agree messages that arrive
after the timeout can most likely not be considered. If creating the result takes longer than the
specified timeout, it suffices to send the agreemessage on time. The corresponding inform
result notification can be sent even after the timeout is expired.

5.2.1 Behavior of the Request Initiator Role

The initiator role in the FIPA Request Interaction Protocol has been implemented by means of
the finite-state machine behavior (Section 3.6). Note, however, that the initiator behavior does
not inherit from the finite-state machine behavior but encapsulates it. The respective state
machine is depicted in Figure 5.2.

The initiator behavior is initialized with a request message. This message can be further
prepared in the first state of the state machine. The following send-requests state checks the
prepared request message. If no message has been prepared or if the prepared message
has no receivers, the state machine can terminate almost immediately. Before, however, the
states handling all responses and result notifications, respectively, are processed. It is there-
with ensured that these states are always activated independently from the actual number or
responses and result notifications received.

If a message has been prepared successfully, it is provided with the fipa-request protocol
identifier. Furthermore, a unique conversation identifier is set to the message in order to rec-
ognize replies. In order to distinguish replies by different responders, a cloned version of the
original request is prepared for each receiver. Each message instance gets a unique reply-
with identifier. Finally, a message pattern is created that waits for messages matching the
correct protocol, conversation-id, and reply-with. If the original request contains
a reply-by date, this timeout is additionally set for the behavior.

The following state receives replies to the request and delegates their handling to

• States handling responses (agree, refuse, not-understood).
• States handling result notifications (inform, failure).
• A state handling messages arriving out of the sequence of the protocol.

24

Aimpulse Spectrum

[not-understood
received

in sequence]

Prepare request

Handle agree

Handle failure

Handle refuse

Handle

not-understood

Handle

out-of-sequence

Handle all

responses

Handle all

result notifications

Check

result notifications

Check

responses

[refuse received
in sequence]

[agree received
in sequence]

[failure received
in sequence]

Handle inform

[inform received
in sequence]

[message received
out of sequence]

[no request prepared or no receivers]

[reply-by
expired]

[all result notifications
received]

[not all
result notifications received]

[all responses
received]

[not all
responses received]

Send requests

entry / check: request

entry / add protocol-identifier

entry / add conversation-id

do / for each receiver

 clone original request

 set unique reply-with

 send message

exit / set message pattern

Receive reply

entry / check: timeout expired

do / receive message

 check performative

 check in-sequence

exit / choose matching

 message handler

Initiator of FIPA-Request-Protocol

Figure 5.2: UML state machine of the request initiator role

After each time a response has been handled, another state checks whether all responses have
been received already. If not all responses have been received yet, the next transition chooses
the receive-reply state. Otherwise, a state that handles all response messages in total is acti-
vated. The same state is also called if the reply-by timeout expires (in this case, all unan-
swered sessions are removed). Subsequent to this state, the result notifications are checked.
The same procedure applies after receiving each result notification. If not all result notifications
have been received yet, the next transition chooses the receive-reply state. Otherwise, a state
handling all result notification messages in total is activated. The result of this terminal state is
also the result of the overall request initiator.

Behaviors exist for preparing requests and for handling replies (Figure 5.3). By default, each
behavior implementation simply calls back a respectivemethod on the initiator behavior. Hence,
it suffices to implement the respective call-back method in an inherited class. As an alternative,
however, it is possible to register a (simple or complex) behavior for each task.

All call-back methods have parameters through which they are provided with the required
messages. If behaviors are registered instead, there is no general possibility to provide such
parameters. Instead, there exists an interface that provides access to the required messages.
It can be accessed with a getter method on the request initiator. Note that implementations

25

Aimpulse Spectrum

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

calls back

replaces

provides

replacescalls back

replaces

prepareRequest:

Behavior

handleAgree:

Behavior

handleNotUnderstood:

Behavior

handleFailure:

Behavior

handleAllResult

Notifications: Behavior

handleOutOfSequence:

Behavior

handleRefuse:

Behavior

handleInform:

Behavior

handleAllResponses:

Behavior

Default

behaviors

Default

behaviors

:RequestInitiator

prepareRequest()

registerPrepareRequest()

handleOutOfSequence()

registerHandleOutOfSequence()

handleAgree()

registerHandleAgree()

handleRefuse()

registerHandleRefuse()

handleNotUnderstood()

registerHandleNotUnderstood()

handleInform()

registerHandleInform()

handleFailure()

registerHandleFailure()

handleAllResponses()

registerHandleAllResponses()

handleAllResultNotifications()

registerHandleAllResultNotficiations()

getMessageAccess() :MessageAccess

getRequest()

setRequest()

getMessage()

getAllResponses()

getAllResultNotifications()

Figure 5.3: UML object diagram of the request initiator role

of this interface only provide access to the messages if their methods are used in the intended
state of the finite-state machine. Otherwise, the methods will throw illegal-state exceptions.

5.2.2 Behavior of the Request Responder Role

The responder role in the FIPA Request Interaction Protocol has been implemented by means
of the finite-state machine behavior (Section 3.6). Note, however, that the responder behavior
does not inherit from the finite-state machine behavior but encapsulates it. The respective state
machine is depicted in Figure 5.4.

The responder behavior waits for requestmessages with the fipa-request protocol iden-
tifier. It is possible to adjust the message pattern in the constructor. The entry point to the state
machine is that a request is received. This request is handled in a respective state. The response
prepared in this state is sent in the subsequent state. If a message with a not-understood or
refuse performative has been prepared, the state machine returns to the first state and waits
for new requests. If an agreemessage or no message has been prepared, a result notification
is prepared in the following step. Also in this case, the state machine cyclically returns to the
first state. This means that, after sending the result, it waits for receiving new requests.

Behaviors exist for handling requests and for preparing result notifications (Figure 5.5). By
default, each behavior implementation simply calls back a respective method on the responder
behavior. Hence, it suffices to implement the respective call-back method in an inherited class.
As an alternative, however, it is possible to register a (simple or complex) behavior for each
task.

All call-back methods have parameters through which they are provided with the required
messages. If behaviors are registered instead, there is no general possibility to provide such
parameters. Instead, there exists an interface that provides access to the required messages. It

26

Aimpulse Spectrum

Receive request

Handle request

Prepare result

notification

[no response
prepared]

[agree sent]

[not-understood
or refuse sent]

Send response

entry / check: response

do / send response

exit / choose next state

Send result notification

entry / check: result

 notification

do / send result notification

Responder of FIPA-Request-Protocol

Figure 5.4: UML state machine of the request responder role

can be accessed with a getter method on the request responder. Note that implementations
of this interface only provide access to the messages if their methods are used in the intended
state of the finite-state machine. Otherwise, the methods will throw illegal-state exceptions.

In case that the call-back methods are used, it suffices to throw respective exceptions in case
of a refuse, not-understood and failure. These exceptions are caught by the default behaviors
and transformed into the expected reply messages.

5.3 FIPA Contract Net Interaction Protocol

The FIPA Contract Net Interaction Protocol is defined as follows (Figure 5.6). The initiator sends
a call for proposals to a group of responders. Each responder decides whether it makes a
proposal or refuses to perform the requested action. The initiator is notified about the decision.
Likewise, a response is sent if the responder does not understand the original call for proposals.
Out of all proposals, the initiator decides which proposals he accepts and rejects, respectively.
The responder is is notified about the decision. If a responder has performed the respective
action for an accepted proposal, the initiator is informed about the result. Likewise, a failure
message is sent if a failure occured.

A timeout can be defined by means of the reply-by slot of the initial cfp message. It refers
to the time until the first response has to be sent. All propose messages that arrive after the
timeout can most likely not be considered. Note that the initial timeout does not cover the
inform result notification for an accepted proposal.

27

Aimpulse Spectrum

calls back

replaces
calls back

replaces
provides

handleRequest:

Behavior

prepareResult

Notification: Behavior

Default

behavior

Default

behavior

:RequestResponder

handleRequest()

registerHandleRequest()

prepareResultNotification()

registerPrepareResultNotification()

getMessageAccess()

getRequest()

setResponse()

getResponse()

setResultNotification()

:MessageAccess

Figure 5.5: UML object diagram of the request responder role

:Initiator :Responder

m≤n

p≤n-m

q=n-m-p

n

r≤q

s=q-r

t≤s

s-t

propose

not-understood

failure

inform

cfp

FIPA-ContractNet-Protocol

accept-proposal

reject-proposal

refuse

Figure 5.6: FIPA Contract Net Interaction Protocol

5.3.1 Behavior of the Contract Net Initiator Role

The initiator role in the FIPA Contract Net Interaction Protocol has been implemented by means
of the finite-state machine behavior (Section 3.6). Note, however, that the initiator behavior
does not inherit from the finite-state machine behavior but encapsulates it. The respective state
machine is depicted in Figure 5.7.

The initiator behavior is initialized with a cfp message. This message can be further prepared
in the first state of the state machine. The following send-call-for-proposals state checks the
prepared cfp message. If no message has been prepared or if the prepared message has no
receivers, the state machine can terminate almost immediately. Before, however, the states
handling all responses and result notifications, respectively, are processed. It is therewith en-
sured that these states are always activated independently from the actual number or responses
and result notifications received.

If a message has been prepared successfully, it is provided with the fipa-contract-net
protocol identifier. Furthermore, a unique conversation identifier is set to the message in order
to recognize replies. In order to distinguish replies by different responders, a cloned version

28

Aimpulse Spectrum

[not-understood
received

in sequence]

Handle propose

Handle failure

Handle refuse

Handle

not-understood

Handle

out-of-sequence

Prepare

call-for-proposals

Handle all

responses

Handle all

result notifications

Check

result notifications

Check

responses

[refuse received
in sequence]

[propose received
in sequence]

[failure received
in sequence]

Handle inform

[inform received
in sequence]

[message received
out of sequence]

[no cfp prepared or no receivers]

[reply-by
expired]

[all result notifications
received]

[not all
result notifications received]

[all responses
received]

[not all
responses received]

Send call-for-proposals

entry / check: cfp

entry / add protocol-identifier

entry / add conversation-id

do / for each receiver

 clone original cfp

 set unique reply-with

 send message

exit / set message pattern

Receive reply

entry / check: timeout expired

do / receive message

 check performative

 check in-sequence

exit / choose matching

 message handler

Initiator of FIPA-Contract-Net-Protocol

Send accepts and rejects

do / for each accept

 set unique reply-with

do / send messages

exit / set message pattern

Figure 5.7: UML state machine of the contract net initiator role

of the original call for proposals is prepared for each receiver. Each message instance gets a
unique reply-with identifier. Finally, a message pattern is created that waits for messages
matching the correct protocol, conversation-id, and reply-with. If the original
request contains a reply-by date, this timeout is additionally set for the behavior.

The following state receives replies to the call for proposals and delegates their handling to

• States handling responses (propose, refuse, not-understood).
• States handling result notifications (inform, failure).
• A state handling messages arriving out of the sequence of the protocol.

After each time a response has been handled, another state checks whether all responses have
been received already. If not all responses have been received yet, the next transition chooses
the receive-reply state. Otherwise, a state that handles all responses in total is activated. The
same state is also called if the reply-by timeout expires (in this case, all unanswered sessions
are removed).

A propose message can be either accepted or rejected in both the handle-propose state and
the handle-all-responses state. To that end, a respective reply can be added to a collection
of acceptances. By means of this collection, the respective handler can also see which other
proposes the behavior has accepted or rejected already. Moreover, it can also modify previous

29

Aimpulse Spectrum

acceptances or rejections based on new information. This is possible because all acceptances
are not sent until all responses have been received and handled.

Subsequent to handle-all-responses state, the result notifications are checked. The same pro-
cedure applies after receiving each result notification. If not all result notifications have been
received yet, the next transition chooses the receive-reply state. Otherwise, a state handling
all result notification messages in total is activated. The result of this terminal state is also the
result of the overall contract net initiator.

Behaviors exist for preparing call for proposals and for handling replies (Figure 5.8). By default,
each behavior implementation simply calls back a respective method on the initiator behavior.
Hence, it suffices to implement the respective call-back method in an inherited class. As an
alternative, however, it is possible to register a (simple or complex) behavior for each task.

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

replaces

calls back

calls back

replaces

provides

replacescalls back

replaces

prepareRequest:

Behavior

handleAgree:

Behavior

handleNotUnderstood:

Behavior

handleFailure:

Behavior

handleAllResult

Notifications: Behavior

handleOutOfSequence:

Behavior

handleRefuse:

Behavior

handleInform:

Behavior

handleAllProposals:

Behavior

Default

behaviors

Default

behaviors

:ContractNetInitiator

prepareRequest()

registerPrepareRequest()

handleOutOfSequence()

registerHandleOutOfSequence()

handleAgree()

registerHandleAgree()

handleRefuse()

registerHandleRefuse()

handleNotUnderstood()

registerHandleNotUnderstood()

handleInform()

registerHandleInform()

handleFailure()

registerHandleFailure()

handleAllProposals()

registerHandleAllProposals()

handleAllResultNotifications()

registerHandleAllResultNotficiations()

getMessageAccess() :MessageAccess

getCfp()

setCfp()

getMessage()

getAllProposals()

getAllAcceptances()

getAllResultNotifications()

Figure 5.8: UML object diagram of the contract net initiator role

All call-back methods have parameters through which they are provided with the required
messages. If behaviors are registered instead, there is no general possibility to provide such
parameters. Instead, there exists an interface that provides access to the required messages. It
can be accessed with a getter method on the contract net initiator. Note that implementations
of this interface only provide access to the messages if their methods are used in the intended
state of the finite-state machine. Otherwise, the methods will throw illegal-state exceptions.

5.3.2 Behavior of the Contract Net Responder Role

The responder role in the FIPA Contract Net Interaction Protocol has been implemented by
means of the finite-state machine behavior (Section 3.6). Note, however, that the respon-

30

Aimpulse Spectrum

der behavior does not inherit from the finite-state machine behavior but encapsulates it. The
respective state machine is depicted in Figure 5.9.

Receive message

Handle acceptHandle reject
Handle

call-for-proposals

[cfp
received] [reject received]

[accept
received]

Send response

entry / check: response

do / send response

Send result notification

entry / check: result

 notification

do / send result notification

Responder of FIPA-Contract-Net-Protocol

Figure 5.9: UML state machine of the contract net responder role

The responder waits for messages with the fipa-contract-net protocol identifier. It is
possible to adjust the message pattern in the constructor. The entry point to the state machine
is that a cfp message is received. The call for proposals is handled in a respective state. The
response prepared in this state is sent in the subsequent state. If a message with a not-
understood or refuse performative has been prepared, the state machine directly returns
to the first state and waits for new messages. If a propose message has been prepared, a
new session is instantiated internally in order to be able to react appropriately on accept and
reject messages. Also in this case, the state machine cyclically returns to the first state. This
means that, after sending the proposal, it waits for receiving new messages.

If a reject or an accept message is received, the respective session is retrieved. Subse-
quently, the corresponding state to handle the message is activated. The handle-reject state
allows dealing with rejections. Afterwards, the state machine returns to the first state and
waits for new messages. The handle-accept state allows preparing the result notification. Af-
terwards, the result notification is send to the initiator. Also in this case, the state machine is
cyclic. This means that, after sending the result notification, it waits for receiving new mes-
sages.

Behaviors exist for handling messages (Figure 5.10). By default, each behavior implementation
simply calls back a respective method on the responder behavior. Hence, it suffices to imple-
ment the respective call-back method in an inherited class. As an alternative, however, it is
possible to register a (simple or complex) behavior for each task.

All call-back methods have parameters through which they are provided with the required
messages. If behaviors are registered instead, there is no general possibility to provide such pa-
rameters. Instead, there exists an interface that provides access to the required messages. It can
be accessed with a getter method on the contract net responder. Note that implementations

31

Aimpulse Spectrum

calls back

replaces calls back

replaces

provides

handleCfp:

Behavior

calls back

replaces

handleReject

Proposal: Behavior

handleAccept

Proposal: Behavior

Default

behaviors

Default

behavior
:ContractNetResponder

handleCfp()

registerHandleCfp()

handleAcceptProposal()

registerHandleAcceptProposal()

handleRejectProposal()

registerHandleRejectProposal()

getMessageAccess()

getCfp()

setProposal()

getProposal()

getAcceptance()

setResultNotification()

:MessageAccess

Figure 5.10: UML object diagram of the contract net responder role

of this interface only provide access to the messages if their methods are used in the intended
state of the finite-state machine. Otherwise, the methods will throw illegal-state exceptions.

In case that the call-back methods are used, it suffices to throw respective exceptions in case
of a refuse, not-understood and failure. These exceptions are caught by the default behaviors
and transformed into the expected reply messages.

32

Aimpulse Spectrum

6 FIPA Directory Facilitator

Multiagent systems are open systems. Agents may join and leave the system during runtime.
Therefore, an agent does not necessarily know all of its interaction partners in advance. The
directory facilitator of FIPA multiagent systems provides the means to discover agents based on
the services they provide (Foundation for Intelligent Physical Agents, 2004, Section 4.1). It is
thus generally referred to as a yellow pages service.

Section 6.1 introduces the descriptions for agents and services. Section 6.2 describes the agent
behaviors to register descriptions with the directory. Section 6.3 goes into more depth and de-
scribes the functions to manually update and search the directory. Finally, Section 6.4 describes
the internal implementation of the directory facilitator and the management of its database.

6.1 Agent and Service Description

Registrations with the directory are based on agent and service descriptions (Figure 6.1). The
AgentDescription interface provides access to the name of the agent as well as the sup-
ported protocols, ontologies, and languages (Foundation for Intelligent Physical Agents, 2004,
Section 6.1.2). It is possible to specify the scope and the lease time of a description. Further-
more, the description contains a set of services provided by the respective agent.

In principle, all components of the agent description are optional. For all directory updates
(register, deregister, or modify), however, an agent must at least specify its name. Otherwise,
a failure exception occurs.

A ServiceDescription contains the name and the type of the service (Foundation for
Intelligent Physical Agents, 2004, Section 6.1.3). It can also specify the supported protocols,
ontologies, and languages of the service. Finally, also the ownership and special properties
can be defined. Like for the agent description, all components of the service description are
optional.

<<interface>>

AgentDescription

getName() : AgentIdentifier

getServices() : Set<ServiceDescription>

getProtocols() : Set<ProtocolIdentifier>

getOntologies() : Set<OntologyIdentifier>

getLanguages() . Set<LanguageIdentifier>

getLeaseTime() : Timestamp

getScope() : Set<Scope>

<<interface>>

ServiceDescription

getName() : ServiceIdentifier

getType() : ServiceType

getProtocols() : Set<ProtocolIdentifier>

getOntologies() : Set<OntologyIdentifier>

getLanguages() . Set<LanguageIdentifier>

getOwnership() : Ownership

getProperties() : SortedMap<String, Property>

Figure 6.1: Agent and service description interfaces

Two classes exist in order to instantiate agent descriptions. The AgentDescriptionBuild-
er provides the means to conveniently create an agent description in one line of code (Fig-
ure 6.2 left). The static anAgent() method creates a builder. For every component of the
description, there is a method to set its value. Note that single-valued components can only
be set once. If all components have been specified, calling the build() method creates the
actual description. Likewise, the AgentDescriptionBuffer can be employed for the step-
wise creation of agent descriptions (Figure 6.2 right).

33

Aimpulse Spectrum

AgentDescriptionBuilder

anAgent() : AgentDescriptionBuilder

named(AgentIdentifier) : AgentDescriptionBuilder

offering(ServiceDescription) : AgentDescriptionBuilder

supporting(ProtocolIdentifier) : AgentDescriptionBuilder

understanding(OntologyIdentifier) : AgentDescriptionBuilder

understanding(LanguageIdentifier) : AgentDescriptionBuilder

withLeaseTime(Timestamp) : AgentDescriptionBuilder

withScope(Scope) : AgentDescriptionBuilder

build() : AgentDescription

AgentDescriptionBuffer

setName(AgentIdentifier)

addService(ServiceDescription)

addProtocol(ProtocolIdentifier)

addOntology(OntologyIdentifier)

addLanguage(LanguageIdentifier)

setLeaseTime(Timestamp)

addScope(Scope)

toAgentDescription() : AgentDescription

Figure 6.2: Classes related to agent description creation

Like for agent descriptions, there are also two classes to instantiate service descriptions. The
ServiceDescriptionBuilder provides the means to conveniently create a service de-
scription in one line of code (Figure 6.3 left). The static aService() method creates a
builder. For every component of the description, there is a method to set its value. Note that
single-valued components can only be set once. If all components have been specified, calling
the build() method creates the actual description. Likewise, the ServiceDescription-
Buffer can be employed for the stepwise creation of service descriptions (Figure 6.3 right).

ServiceDescriptionBuffer

setName(ServiceIdentifier)

setType(ServiceType)

addProtocol(ProtocolIdentifier)

addOntology(OntologyIdentifier)

addLanguage(LanguageIdentifier)

setOwnership(Ownership)

addProperty(Property)

toServiceDescription() : ServiceDescription

ServiceDescriptionBuilder

aService() : ServiceDescriptionBuilder

named(ServiceIdentifier) : ServiceDescriptionBuilder

ofType(ServiceType) : ServiceDescriptionBuilder

supporting(ProtocolIdentifier) : ServiceDescriptionBuilder

understanding(OntologyIdentifier) : ServiceDescriptionBuilder

understanding(LanguageIdentifier) : ServiceDescriptionBuilder

byOwner(Ownership) : ServiceDescriptionBuilder

withProperty(Property) : ServiceDescriptionBuilder

build() : ServiceDescription

Figure 6.3: Classes related to service description creation

6.2 Behavior-Based Implementation

Four auxiliary behaviors (Figure 6.4) provide the most most convenient way for directory interac-
tion: RegisterInitiator, DeregisterInitiator, ModifyInitiator, and Sear-
chInitiator. They relieve programmers from dealing with low-level directory update and
search functions. These behaviors are based on the FIPA Request Interaction Protocol Reques-
tInitiator implementation (Section 5.2.1).

The behaviors can be combined easily with any other behavior. For instance, they can be added
as states of a FiniteStateMachineBehaviorwith conditional transitions (Section 3.6). In
that case, the succeeding behavior is not executed until the directory interaction is finished. The
next behavior can then be chosen based on the result of the directory update or search. The
behaviors provide call-back methods that can be implemented in order to handle successful
and unsuccessful updates and search queries.

34

Aimpulse Spectrum

RegisterInitiator

RegisterInitiator(BehaviorController, AgentDescription)

handleRegisteredDescription(AgentDescription)

getRegisteredDescription() : AgentDescription

REGISTERED : Result MODIFIED : Result

DEREGISTERED : Result RESULTS_FOUND : Result

NO_RESULTS : Result

SearchInitiator

SearchInitiator(BehaviorController, AgentDescription)

SearchInitiator(BehaviorController, AgentDescription, long)

handleSearchResults(AgentDescription[])

getSearchResults() : AgentDescription[]

ModifyInitiator

ModifyInitiator(BehaviorController, AgentDescription)

handleModifiedDescription(AgentDescription)

getModifiedDescription() : AgentDescription

DeregisterInitiator

DeregisterInitiator(BehaviorController, AgentDescription)

handleDeregisteredDescription(AgentDescription)

getDeregisteredDescription() : AgentDescription

SingleRequestInitiator

handleNotUnderstood(String)

handleFailure(String)

handleRefuse(String)

handleReplyNotUnderstood(Message)

NOT_UNDERSTOOD_EXCEPTION : Result

FAILURE_EXCEPTION : Result

REFUSE_EXCEPTION : Result

REPLY_NOT_UNDERSTOOD_EXCEPTION : Result

Figure 6.4: Agent behaviors for updating and searching the directory

Note that agents can only modify or deregister their registration if they are actually registered.
Otherwise, a failure exception occurs. In contrast to the FIPA standard, the SearchInitia-
tor does not restrict the maximum number of search results by default. However, they can
be limited with an optional constructor parameter.

6.3 Update and Search Functions

Internally, so-called functions control the interaction with the directory. In order to update
(register, deregister, or modify) a registration with the directory, an UpdateFunction is sent
to the directory facilitator (Figure 6.5). This function contains the agent description and the
type (register, deregister, or modify) of the update (Foundation for Intelligent Physical Agents,
2004, Sections 6.2.1 to 6.2.3).

If an update is successful, the directory returns the new directory record. This may distinguish
from the registration request. In particular, the directory may remove the lease time if it does
not support this feature (Foundation for Intelligent Physical Agents, 2004, Section 5.2.1).

In order to search the directory for registered agents, a SearchFunction is sent to the di-
rectory (Figure 6.6). The search function contains a template agent description and search
constraints (Foundation for Intelligent Physical Agents, 2004, Section 6.2.4).

The SearchConstraints (Foundation for Intelligent Physical Agents, 2004, Section 6.1.4)
allow specifying the maximum number of results as well as the maximum search depth (if
federated directory facilitators are employed). A unique search identifier ensures that queries

35

Aimpulse Spectrum

* 1
<<enumeration>>

UpdateFunction.Type

REGISTER

DEREGISTER

MODIFY

UpdateFunction

UpdateFunction(Type, AgentDescription)

getType() : Type

getDescription() : AgentDescription

Figure 6.5: Directory update function

1
1

SearchFunction

SearchFunction(AgentDescription, SearchConstraints)

getDescription() : AgentDescription

getConstraints() : SearchConstraints

SearchConstraints

SearchConstraints(UniqueIdentifier)

SearchConstraints(UniqueIdentifier, long, long)

getIdentifier() : UniqueIdentifier

getMaxDepth() : int

getMaxResults() : int

Figure 6.6: Directory search function

can be correctly handled with federated directory facilitators (Foundation for Intelligent Physical
Agents, 2004, Section 6.1.3). Note that the current version of Aimpulse Spectrum does not
support federated directory facilitators. Therefore, the max-depth parameter is currently not
evaluated.

Following the standard of the Foundation for Intelligent Physical Agents (2004, Section 6.2.4.1),
a directory entry matches a query if:

1. For each single-valued component set in the template, the entry has the same value like the
template and

2. For each multi-valued component set in the template, the entry has at least the same values
like the template.

6.4 Directory Management

The directory of Aimpulse Spectrum is administered by an agent. All tasks related to direc-
tory management are implemented in the DirectoryManager class which is a Behavior
(Figure 6.7). The FIPAPlatform of Aimpulse Spectrum instantiates a directory agent and
provides it with this behavior. The directory supports the FIPA Request Interaction Protocol.
Therefore, the implementation of the DirectoryManager behavior is based on the Re-
questResponder (Section 5.2.2).

1

1

MemoryDirectoryDatabase

DirectoryManager <<interface>>

Behavior

waitingFor() : EventPattern

run()

isFinished() : boolean

<<interface>>

DirectoryDatabase

update(UpdateFunction) : AgentDescription

search(SearchFunction) : AgentDescription[]

Directory(BehaviorController)

Directory(BehaviorController, DirectoryDatabase)

Figure 6.7: UML class diagram of the directory facilitator

36

Aimpulse Spectrum

All registered agent descriptions are stored in a DirectoryDatabase. The interface of this
database provides the directory with the means to administer (update and search) its regis-
trations. The default implementation is the MemoryDirectoryDatabase which holds all
agent registrations as Java objects in memory. Other implementations of the interface might,
for instance, employ an SQL database in order to be more scalable.

Note that the default MemoryDirectoryDatabase does not consider the lease time of
agent descriptions. By contrast, when the directory notifies agents about their successful reg-
istration, they are informed that the registration time is not limited.

37

Aimpulse Spectrum

7 Agent Team Formation

In multiagent systems, there is often a potential for cooperation of agents. For instance, a team
of agents might be able to jointly achieve a goal that one agent cannot achieve in isolation.
Or, a team can achieve a goal better or more easily than one single agent. In order to be able
to react flexibly on changing requirements or environments, agents should therefore be able
to establish organisational structures like teams adaptively.

Different approaches exist for team formation (Schuldt, 2011, Chapter 6). A common approach
is to apply the contract net interaction protocol for team formation (Section 5.3). An agent can
initiate the contract net in order to announce missing capabilities required to solve its intended
goal to other agents. Others can propose how they could support the initiator. Out of all
proposals, the initiator can then form the best team for the intended task.

Another goal of team formation is to profit from economies of scale by using resources jointly.
In that scenario, it might not be appropriate to have only one single point in time at which the
team is formed. By contrast, it is desirable that additional participants can join the team later
in order to use resources even more efficiently. This can be achieved by changing the initiator
role of team formation from the team manager to the team member.

Section 7.1 introduces the Aimpulse interaction protocol for dynamic team formation. Sub-
sequently, Section 7.2 describes the functions to match, join, and leave a team. Finally, Sec-
tion 7.3 documents the behavior-based implementation of the agent roles in team formation.

7.1 Team Formation Interaction Protocol

The Aimpulse Team Formation Interaction Protocol (Schuldt, 2011, Chapter 6) allows partition-
ing agents into distinct teams. If the criterion for team formation is an equivalence relation,
all members of one team have the same properties with respect to the relation. The resulting
teams are dynamic in the sense that agents may join them later. The involved roles are the
participant, the FIPA directory facilitator (Chapter 6), and the team manager. The protocol is
defined as follows (Figure 7.1).

Agents may choose to form a team if they have identified a potential for cooperation (Schuldt,
2011, Chapter 5). If so, each instance of the team formation protocol is instantiated by the
participant that intends to join a team. Initially the participant assumes that there is no team
matching its requirements. Therefore, it registers itself as a team manager with the directory
facilitator. Then, it searches the directory for all team managers for the respective purpose.

The participant contacts all team managers found and provides them with its properties in
order to request a match. If another team manager has registered itself earlier for the same
team, the participant deregisters itselfs and requests to join this team. Otherwise, it is actually
a team manager itself.

7.2 Match, Join, and Leave Functions

In order to participate in team formation and to interact with their team managers, agents
can employ three functions: MatchFunction, JoinFunction, and LeaveFunction (Fig-
ure 7.2). These functions are transmitted in messages to the respective team managers. Each
function contains a TeamDescriptionwhich again contains the AgentIdentifier of the
initiating agent as well as the ServiceIdentifier and the ServiceType of the team to

39

Aimpulse Spectrum

:Participant :DirectoryFacilitator :TeamManager

n

n

m≤n

l=n-m

request-search

inform-result

request-register

inform-registered

request-match

inform-matched

failure-no-match

request-deregister

inform-deregistered

request-join

inform-joined

Aimpulse-TeamFormation-Protocol

Figure 7.1: Aimpulse Team Formation Interaction Protocol

be established. The TeamDescription is an interface which can be extended with the actual
components required by the intended application.

Only the MatchFunction informs about its result with a specific MatchResult reply. The
MatchResult contains the AgentIdentifier of thematching teammanager, the double
distance, and the Timestamp at which the respective team has been established.

1

11 1

1

MatchFunction

MatchResult

MatchFunction(TeamDescription)

getDescription() : TeamDescription

JoinFunction

JoinFunction(TeamDescription)

getDescription() : TeamDescription

getName() : AgentIdentifier

getService() : ServiceIdentifier

getServiceType() : ServiceType

LeaveFunction

LeaveFunction(TeamDescription)

getDescription() : TeamDescription

<<interface>>

TeamDescription

getManager() : AgentIdentifier

getDistance() : double

getEstablished() : Timestamp

1

Figure 7.2: UML class diagram of the team functions

40

Aimpulse Spectrum

7.3 Behavior-Based Implementation

The Team Formation Interaction Protocol has been implemented based on event-driven agent
behaviors (Chapter 3). Figure 7.3 gives an overview of the behaviors responsible for coordinat-
ing the interaction between participants in team formation and team managers.

The TeamParticipant behavior is implemented based on a FiniteStateMachineBe-
havior. States contained in the finite-state machine include a MatchInitiator and a
JoinInitiator. Apart from that, also initiators communication with the directory are con-
tained. The LeaveInitiator behavior is not part of the TeamParticipant behavior. This
is due to the fact that is not part of team formation. However, team members may employ the
LeaveInitiator behavior later in order to leave a team again.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

MatchInitiator JoinInitiator

LeaveInitiator

MatchResponder JoinResponder

ParallelBehavior

FiniteStateMachineBehavior

TeamParticipant

TeamManager

LeaveResponder

Figure 7.3: UML class diagram of the behavior architecture for team formation

The TeamManager behavior aggregates the MatchResponder, a JoinResponder, and a
LeaveResponder behavior. To this end, it employs a ParallelBehavior which executes
the member behaviors in parallel.

All initiators and responders are implemented based on the implementation of the FIPA Request
Interaction Protocol (Section 5.2). Note, however, that they have their own protocol identifiers
in order distinguish them more efficiently:

• aimpulse-team-match
• aimpulse-team-join
• aimpulse-team-leave

7.3.1 Behavior of the Team Participant Role

The participant role in team formation is implemented by the TeamParticipant behav-
ior (Figure 7.4). Each TeamParticipant has a TeamManagerFactory instance in order to
instantiate a teammanager behavior if the participant itself is a teammanager. The Default-
TeamManagerFactory is instantiated with a TeamMatcher and (optionally) a TeamData-
base. If no TeamDatabase is specified, the default MemoryTeamDatabase is used.

41

Aimpulse Spectrum

<<interface>>

TeamManagerFactory

DefaultTeamManagerFactory(TeamMatcher)

DefaultTeamManagerFactory(TeamMatcher, TeamDatabase)

createTeamManager(BehaviorController) : Behavior

DefaultTeamManagerFactory

TeamParticipant(BehaviorController, TeamDescription, TeamMatcher)

TeamParticipant(BehaviorController, TeamDescription, TeamManagerFactory)

TeamParticipant

1

1

Figure 7.4: UML class diagram of the team participant role

Note that each TeamManagerFactory can create only one team manager instance. This is
due to the fact that, otherwise, two team manager instances would use the same matcher
and database. Cloning these dependencies, however, is impossible. Both interfaces might be
implemented by the same class (e.g., in order to update the matcher reference based on the
current database entries). If both dependencies were cloned, they would no longer be the
same class.

The TeamParticipant can be instantiated with a TeamManagerFactory. Alternatively,
it suffices to specify a TeamMatcher. In that case, a DefaultTeamManagerFactory with
the MemoryTeamDatabase is used.

Initially, the TeamParticipant employs the TeamManagerFactory in order to instantiate
and install a Behavior that acts as a team manager (Figure 7.5). Afterwards, it employs a
RegisterInitiator behavior in order to register with the directory facilitator as a team
manager (Chapter 6). The service identifier and the service type for registering with the direc-
tory are derived from the TeamDescription. Subsequently, it employs a SearchInitia-
tor behavior in order to search the directory for registered team managers. Then, all team
managers retrieved from the directory (apart from the agent itself) are contacted by means of
the MatchInitiator behavior.

If no matching team manager is found, team formation terminates and the team participant
actually remains a team manager. If a match is found, the participant checks whether the
other manager is younger than itself. In that case, the other agent is expected to deregister
and join. Otherwise, the participant chooses the team manager with the best match (i.e., the
one with the smallest distance). It employs the DeregisterInitiator in order to deregister
as a team manager from the directory. Afterwards, it employs the JoinInitiator in order
to join the team manager chosen. Finally, it informs the TeamManager behavior about the
dissolution and uninstalls it.

7.3.2 Behavior of the Team Manager Role

The TeamManager role in team formation is implemented by a Behavior (Figure 7.6). It
has a dissolve() method by which the TeamParticipant can inform it about the dis-
solution of the team. In that case, a TeamManager could take the necessary steps such as

42

Aimpulse Spectrum

[no match]

Instantiate and install

team manager behavior

Register with directory

as team manager

Deregister from directory

as team manager

Join matching

team manager

Inform team manager

behavior about dissolution

Uninstall team

manager behavior

Search directory for

registered team managers

Request match from

registered team managers

Participant of Aimpulse-TeamFormation-Protocol

[match
found]

Figure 7.5: UML state diagram of the team participant role

informing its members. The DefaultTeamManager implementation does not do anything if
its dissolve() method is called.

The DefaultTeamManager implementation aggregates a MatchResponder, a JoinRe-
sponder, and a LeaveResponder behavior in a ParallelBehavior (Figure 7.3). These
behaviors, however, are only responsible for coordinating the interaction with team partici-
pants. All decisions regarding team formation are delegated to the TeamMatcher interface.
The TeamDatabase administers team member registrations (Figure 7.6). The MatchRe-
sponder consults the TeamMatcher in order to decide whether a TeamParticipant
matches the team. The JoinResponder again consults the TeamMatcher (to prevent fraud)
and delegates join requests to the TeamDatabase afterwards. The LeaveResponder dele-
gates leave request to the TeamDatabase.

The TeamMatcher interface provides the distance() methods which determines the dis-
tance of the TeamDescription of a TeamParticipant to the respective description of
the whole team. The distance is represented by a double value with 0 denoting equality. If
the distance is above a certain threshold (which depends on the domain of application), the
TeamMatcher throws a NoMatchException. Consequently, the TeamMatcher sends a
Failure message to the TeamParticipant.

The TeamDatabase specifies the interface for administering the team member registrations
(Figure 7.6). The methods handleJoin() and handleLeave() are called by the De-
faultTeamManager behavior in order to notify the database about changes. For both opera-
tions, the TeamDatabasemay throw a FailureException. The handleJoin()method
is supposed to throw an exception if the requesting participant is already member of the re-
spective team. The handleLeave() method should throw an exception if the requesting
participant is not member of the respective team.

43

Aimpulse Spectrum

<<interface>>

TeamDatabase

handleJoin(TeamDescription) {exceptions = FailureException}

handleLeave(TeamDescription) {exceptions = FailureException}

<<interface>>

TeamMatcher

distance(TeamDescription) : double {exceptions=NoMatchException}

<<interface>>

Behavior

<<interface>>

TeamManager

DefaultTeamManager

1 1

1

1

dissolve()

Figure 7.6: UML class diagram of the team manager role

There are currently two implementations of the TeamDatabase interface (Figure 7.7). The
MemoryTeamDatabase keeps all registrations as Java objects in memory. For performance
reasons, the MemoryTeamDatabase does not support registering listeners for database up-
dates. However, if this feature is required, the ListenableTeamDatabase may be em-
ployed. The ListenableTeamDatabase implements the so-called decorator pattern
(Gamma, Helm, Johnson, & Vlissides, 1995, p. 175) and can wrap any other TeamDatabase
implementation, e.g., the MemoryTeamDatabase.

<<interface>>

TeamJoinListener

<<interface>>

TeamDatabase

handleTeamJoin(AgentIdentifier) {exceptions = JoiningNotPermittedException}

handleTeamJoined(AgentIdentifier)

<<interface>>

TeamLeaveListener

handleTeamLeave(AgentIdentifier) {exceptions = LeavingNotPermittedException}

handleTeamLeft(AgentIdentifier)

MemoryTeamDatabase

ListenableTeamDatabase

ListenableTeamDatabase(TeamDatabase)

addTeamJoinListener(TeamJoinListener)

addTeamLeaveListener(TeamLeaveListener)

1 1

*

*

1
1

Figure 7.7: UML class diagram of the team database

The ListenableTeamDatabase allows registering instances of the TeamJoinListener
and the TeamLeaveListener, respectively. The handleTeamJoined() and handle-
TeamLeft() methods are called if the respective operation is finished. However, it is also
possible to check these operations in advance. The handleTeamJoin() method allows
throwing a JoiningNotPermittedException. Likewise, the handleTeamLeave() can

44

Aimpulse Spectrum

throw a LeavingNotPermittedException. These methods can be used by components
in order to influence the team member administration. For instance:

• Joining might not be permitted if the potential member is known to be malicious.
• Joining might not be permitted if a maximum number of team members is reached.
• Leaving might not be permitted if other contracts have to be dissolved first.

Note that listeners are only provided with the AgentIdentifier of the participant. They
do not have access to the TeamDescription of the participant. This is due to the fact that
joining and leaving should not be rejected based on the description. The respective checks
should be left to the TeamMatcher which is consulted already before the TeamDatabase
comes into play. If the TeamMatcher considers a TeamParticipant to be eligible for
joining the team (based on the team description), the TeamDescription should not be
a reason for later rejections.

Both, the TeamMatcher and TeamDatabase interfaces, can be implemented by the same
class. This is useful, if the TeamMatcher depends on the current member registrations. Con-
sider, for instance, a distance() function based on the means of the current member de-
scriptions. As another example, the distance may depend on the nearest neighbour.

45

Aimpulse Spectrum

8 Configuration

Aimpulse Spectrum can be used as a stand-alone solution or as a library that is instantiated by
other software systems. If it is used as a library, the other system will most likely itself configure
the Platform and its agents. Particularly for simulation, however, it is useful to read scenario
configurations from files to make them well-documented and reproducible.

Spectrum can be configured by means of XML files. Simply reading a configuration from an
XML file already suffices for most applications. Sometimes, however, it advantageous to be
able to further process the configuration. Therefore, the configuration architecture of Aimpulse
Spectrum is also prepared to transform and to write configurations.

Section 8.1 describes the format of XML configuration files for Aimpulse Spectrum. Subse-
quently, Section 8.2 goes into more depth and introduces the overall configuration architec-
ture. Section 8.3 addresses how platform configurations can be processed and persisted.

8.1 XML Configuration Files

Aimpulse Spectrum is shipped with scripts to start it with an XML configuration. On Microsoft
Windows operating systems, Aimpulse Spectrum can be started as follows:

spectrum.bat -c scenario.xml -cp scenario.jar

For Unix-like operating systems, the respective start script is named spectrum.sh. The -c
parameter allows specifying the XML configuration for the platform. The agent implementation
can be added to the class path with the -cp parameter.

The XML configuration for Aimpulse Spectrum scenarios comprises two parts: the definition
of the runtime environment and the processes to be executed (Listing 8.1).

Listing 8.1: XML configuration example

<?xml version="1.0" encoding="UTF-8"?>
<spectrum version="1">
<scenario>
<runtimeEnvironment

implementation="com.aimpulse.spectrum.core.DiscreteEventSimulation">
<attribute name="startTime">2011-09-01T08:30:00.000Z</attribute>

</runtimeEnvironment>
<processes>

<process name="agent" implementation="com.example.staff.Employee"
startTime="2012-09-15T09:15:00.000Z">

<attribute name="name">Harold</attribute>
<attribute name="salary">30000</attribute>

</process>
</processes>

</scenario>
</spectrum>

The runtime environment is defined by means of the fully qualified name of a Java class that
implements the RuntimeEnvironment interface (Section 2.2.1). The example in Listing 8.1
uses the default DiscreteEventSimulation execution mode of Aimpulse Spectrum. At-
tributes can be specified that are required by the chosen RuntimeEnvironment. In the

47

Aimpulse Spectrum

example, the start time of the platform is specified as an attribute. The runtime environment
definition can be specified only once per configuration.

The processes section of the configuration specifies the processes to be executed, i.e., the
agents (Section 2.2.2). The implementation of an agent is defined the fully qualified name
of a Java class that implements the CommunicativeAgent interface. The name is used by
the platform in order to generate a unique AgentIdentifier when the process is added to
the platform. If the provided name is already used as an AgentIdentifier, the platform
extends it with a serial number. Furthermore, it is possible to specify a Timestamp start time at
which the respective process should be executed for the first time. If no start time is specified,
the process is added immediately to the platform

Times are specified in the XML Schema xs:dateTime data type which is inspired by the ISO
8601 standard. Note that all times should include an explicit time zone in order to make them
independent from interpretation, e.g., based on the current location of a user. The example
uses the Z which stands for the UTC time zone.

8.2 Configuration Architecture

Internally, the Spectrum configuration API is stream-based. That is, an event is generated for
each configuration element that is added to the configuration, e.g., when reading it from a file.
The object can then be processed immediately. The advantage of the stream-based approach
is that it is not necessary to keep the whole configuration in memory, possibly over multiple
processing steps. Instead, its elements can be processed one after another.

The central interface for this purpose is the PlatformConfiguration. Its definition corre-
sponds to the XML configuration. Like the XML configuration, also the PlatformConfigu-
ration interface consists of two parts (Figure 8.1). On the one hand, the specification of the
runtime environment (e.g., discrete event simulation). On the other hand, the specification of
the simulation processes (e.g., agents).

1

1 1

*

setRuntimeEnvironment(RuntimeEnvironmentDefinition)

addProcess(ProcessDefinition)

RuntimeEnviromentDefinition

getImplementation() : Class

getAttributes() : Attributes

newInstance() : RuntimeEnvironment

ConfigurablePlatform

ProcessDefinition

getName() : String

getImplementation() : Class

getAttributes() : Attributes

hasStartTime() : boolean

getStartTime() : Timestamp

newInstance() : CommunicativeAgent

<<interface>>

PlatformConfiguration

<<interface>>

Platform

Figure 8.1: UML class diagram of the platform configuration

48

Aimpulse Spectrum

The RuntimeEnvironmentDefinition comprises a Java Class implementation and op-
tional Attribute instances which further specify the implementation. The actual Run-
timeEnvironment can be instantiated with the newInstance() method. The runtime
environment definition can be specified only once per configuration.

A ProcessDefinition comprises a String name, a Java Class implementation, and
optional Attribute instances which further specify the implementation. The name is used
by the platform in order to generate a unique AgentIdentifier when the process is added
to the platform. If the provided name is already used as an AgentIdentifier, the platform
extends it with a serial number. Furthermore, it is possible to specify a Timestamp start time at
which the respective process should be executed for the first time. If no start time is specified,
the process is added immediately to the platform. Process definitions cannot be added to a
configuration unless the runtime environment definition has been specified.

Both the RuntimeEnvironmentDefinition and ProcessDefinition classes are im-
mutable (like the java.lang.String). Buffer and builder auxiliary classes help instantiate
them conveniently.

A RuntimeEnvironmentDefinition can be created by means of the RuntimeEnvi-
ronmentDefinitionBuffer and RuntimeEnvironmentDefinitionBuilder auxil-
iary classes (Figure 8.2). A RuntimeEnvironmentDefinitionBuffer is instantiated with
a Java Class implementation. Arbitrary Attribute instances can be added with the add-
Attribute() method. If the buffer is complete, the actual RuntimeEnvironmentDef-
inition can be created with the toRuntimeEnvironmentDefinition() method. The
RuntimeEnvironmentDefinitionBuilder class provides the same functionality with a
convenient one-line notation.

RuntimeEnviromentDefinitionBuffer

RuntimeEnvironmentDefinitionBuffer(Class)

addAttribute(Attribute)

toRuntimeEnvironmentDefinition() : RuntimeEnvironmentDefinition

RuntimeEnviromentDefinitionBuilder

aRuntimeEnvironment() : RuntimeEnvironmentDefinitionBuilder

withAttribute(Attribute) : RuntimeEnvironmentDefinitionBuilder

build() : RuntimeEnvironmentDefinition

Figure 8.2: UML class diagram of the classes for runtime environment definition creation

A ProcessDefinition can be created by means of the ProcessDefinitionBuffer
and ProcessDefinitionBuilder classes (Figure 8.3). A ProcessDefinitionBuffer
is instantiated with a String name and a Java Class implementation. Arbitrary Attribute
instances can be added with the addAttribute()method. Furthermore, it is possible to set
the Timestamp start time with the setStartTime()method. If the buffer is complete, the
actual ProcessDefinition can be created with the toProcessDefinition()method.
The ProcessDefinitionBuilder class provides the same functionality with a convenient
one-line notation.

8.3 Stream-Based Configuration Processing

The ConfigurablePlatform is a Platform (Section 2.2) implementation that also im-
plements the PlatformConfiguration interface (Figure 8.1). Definitions of the runtime
environment or processes are delegated directly to the underlying platform. Consequently, this
type of platform can act as a consumer of a configuration read from a file.

49

Aimpulse Spectrum

ProcessDefinitionBuffer

ProcessDefinitionBuffer(String, Class)

addAttribute(Attribute)

setStartTime(Timestamp)

toProcessDefinition() : ProcessDefinition

ProcessDefinitionBuilder

aProcess(String, Class) : ProcessDefinitionBuilder

withAttribute(Attribute) : ProcessDefinitionBuilder

withStartTime(Timestamp) : ProcessDefinitionBuilder

build() : ProcessDefinition

Figure 8.3: UML class diagram of the classes for process definition creation

Reading a configuration from an XML file can be accomplished with SAX, the Simple API for
XML (McLaughlin, 2001, Chapters 3 and 4). The XMLConfigurationHandler implements
the ContentHandler interface of SAX (Figure 8.4). Therefore, it can be registered as the
content handler of a SAX XMLReader. The content handler transforms all XML events gen-
erated by the SAX parser into configuration elements. These configuration elements are then
directly added to the PlatformConfiguration specified in the constructor of the XML-
ConfigurationHandler.

setContentHandler(org.xml.sax.ContentHandler)

startDocument()

endDocument()

XMLConfigurationWriter

*

1

<<interface>>

org.xml.sax.XMLReader

<<interface>>

org.xml.sax.ContentHandler

<<interface>>

PlatformConfiguration

XMLConfigurationHandler

Figure 8.4: UML class diagram of the stream-based configuration

The event-based processing of the input stream relieves the system from storing the configura-
tion in some container. This helps particularly save resources when dealing with large configu-
rations. Following the decorator design pattern (Gamma et al., 1995, p. 175), implementations
of the PlatformConfiguration interface can be decorated with other classes that process
the configuration elements before adding them to the underlying configuration. For instance,
process definitions could be filtered or modified.

The XMLConfigurationWriter helps persist configuration elements in the XML format.
It implements the PlatformConfiguration interface (Figure 8.4). This writer does not
simply write an XML file. Actually, it does not write any file at all. Instead, the writer simply
generates the SAX events for the respective XML elements as if it were an XML parser. A SAX
ContentHandler can be registered in order to handle the generated events. Therewith, this
class is much more versatile than a simple writer.

50

Aimpulse Spectrum

The registered content handler can be used in order to forward the generated SAX events
directly to another XML processor. Hence, it is possible to build XML pipelines without an in-
direction over the file system. In order to transform the XML events back into configuration
elements (e.g., after some XSL transforms), the XMLConfigurationHandler can be em-
ployed. Such a handler could even be registered directly as a content handler for this writer
(although there are very rare occasions, if any, where this seems reasonable in practice).

A java.xml.transform.sax.TransformerHandler can be created with the help of
the java.xml.transform.sax.SAXTransformerFactory to write an XML file. This
handler must be registered as the content handler of the XMLConfigurationWriter. The
destination of the data can be specified with the java.xml.transform.Result of the
handler.

Before adding configuration elements to the XMLConfigurationWriter, startDocu-
ment() must be called. After adding all configuration elements, endDocument() must be
called in order to finish the document. If the endDocument() method is not called, no valid
XML is generated by the writer. Note that this method does not implicitly call some close()
method of some underlying stream. Operating only on an event interface, this class does not
have access to such a method.

51

Aimpulse Spectrum

References

Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE. Chichester, UK: John Wiley & Sons.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language User Guide
(2nd ed.). Amsterdam, The Netherlands: Addison-Wesley Longman.

Foundation for Intelligent Physical Agents. (2002a). FIPA ACL Message Representation in String
Specification (Standard No. fipa00070). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2002b). FIPA ACL Message Representation in XML
Specification (Standard No. SC00071E). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2002c). FIPA ACL Message Structure Specification
(Standard No. SC00061G). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2002d). FIPA Communicative Act Library Specifica-
tion (Standard No. SC00037J). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2002e). FIPA Contract Net Interaction Protocol
Specification (Standard No. SC00029H). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2002f). FIPA Request Interaction Protocol Specifi-
cation (Standard No. SC00026H). Geneva, Switzerland.

Foundation for Intelligent Physical Agents. (2004). FIPA Agent Management Specification
(Standard No. SC00023K). Geneva, Switzerland.

Freeman, S., & Pryce, N. (2009). Growing Object-Oriented Software, Guided by Tests. Ams-
terdam, The Netherlands: Addison-Wesley Longman.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Amsterdam, The Netherlands: Addison-Wesley Longman.

Huhns, M. N., & Stephens, L. M. (1999). Multiagent Systems and Societies of Agents. In
G. Weiss (Ed.), Multiagent Systems. A Modern Approach to Distributed Artificial Intelli-
gence (pp. 79–120). Cambridge, MA, USA: MIT Press.

Kay, M. (2008). XSLT 2.0 and XPath 2.0 (4th ed.). Indianapolis, IN, USA: Wiley Publishing.

McLaughlin, B. (2001). Java & XML (2nd ed.). Sebastopol, CA, USA: O’Reilly & Associates.

Odell, J., Parunak, H. V. D., & Bauer, B. (2000). Representing Agent Interaction Protocols in UML.
In P. Ciancarini & M. Wooldridge (Eds.), 1st International Workshop on Agent-Oriented
Software Engineering (AOSE 2000) (pp. 121–140). Limerick, Ireland: Springer-Verlag.

Schuldt, A. (2011). Multiagent Coordination Enabling Autonomous Logistics. Heidelberg,
Germany: Springer-Verlag.

Schuldt, A., Gehrke, J. D., & Werner, S. (2008). Designing a Simulation Middleware for FIPA
Multiagent Systems. In L. Jain et al. (Eds.), 2008 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology (WI-IAT 2008) (pp. 109–113). Syd-
ney, Australia: IEEE Computer Society Press.

Shore, J. (2004). Fail Fast. IEEE Software, 21(5), 21–25.

53

	Introduction
	Implementation
	Structure of this Document

	Aimpulse Spectrum
	Fundamental Concepts
	High-Level Platform
	Controller
	Runtime Characteristics

	Event-Driven Agent Behavior
	Event-Driven Behavior Concept
	Behavior Architecture
	Basic Behavior
	Parallel Behavior
	Sequential Behavior
	Finite-State Machine Behavior
	Factory Behavior

	Agent Communication
	Communicative Acts
	Messages
	Message Creation
	Message Exchange
	Message Patterns

	FIPA Interaction Protocols
	Behavior-Based Implementation
	FIPA Request Interaction Protocol
	FIPA Contract Net Interaction Protocol

	FIPA Directory Facilitator
	Agent and Service Description
	Behavior-Based Implementation
	Update and Search Functions
	Directory Management

	Agent Team Formation
	Team Formation Interaction Protocol
	Match, Join, and Leave Functions
	Behavior-Based Implementation

	Configuration
	XML Configuration Files
	Configuration Architecture
	Stream-Based Configuration Processing

	References

